Step |
Hyp |
Ref |
Expression |
1 |
|
psraddcl.s |
|- S = ( I mPwSer R ) |
2 |
|
psraddcl.b |
|- B = ( Base ` S ) |
3 |
|
psraddcl.p |
|- .+ = ( +g ` S ) |
4 |
|
psraddcl.r |
|- ( ph -> R e. Grp ) |
5 |
|
psraddcl.x |
|- ( ph -> X e. B ) |
6 |
|
psraddcl.y |
|- ( ph -> Y e. B ) |
7 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
8 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
9 |
7 8
|
grpcl |
|- ( ( R e. Grp /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x ( +g ` R ) y ) e. ( Base ` R ) ) |
10 |
9
|
3expb |
|- ( ( R e. Grp /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( +g ` R ) y ) e. ( Base ` R ) ) |
11 |
4 10
|
sylan |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( +g ` R ) y ) e. ( Base ` R ) ) |
12 |
|
eqid |
|- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
13 |
1 7 12 2 5
|
psrelbas |
|- ( ph -> X : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` R ) ) |
14 |
1 7 12 2 6
|
psrelbas |
|- ( ph -> Y : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` R ) ) |
15 |
|
ovex |
|- ( NN0 ^m I ) e. _V |
16 |
15
|
rabex |
|- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } e. _V |
17 |
16
|
a1i |
|- ( ph -> { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } e. _V ) |
18 |
|
inidm |
|- ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } i^i { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
19 |
11 13 14 17 17 18
|
off |
|- ( ph -> ( X oF ( +g ` R ) Y ) : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` R ) ) |
20 |
|
fvex |
|- ( Base ` R ) e. _V |
21 |
20 16
|
elmap |
|- ( ( X oF ( +g ` R ) Y ) e. ( ( Base ` R ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) <-> ( X oF ( +g ` R ) Y ) : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` R ) ) |
22 |
19 21
|
sylibr |
|- ( ph -> ( X oF ( +g ` R ) Y ) e. ( ( Base ` R ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) |
23 |
1 2 8 3 5 6
|
psradd |
|- ( ph -> ( X .+ Y ) = ( X oF ( +g ` R ) Y ) ) |
24 |
|
reldmpsr |
|- Rel dom mPwSer |
25 |
24 1 2
|
elbasov |
|- ( X e. B -> ( I e. _V /\ R e. _V ) ) |
26 |
5 25
|
syl |
|- ( ph -> ( I e. _V /\ R e. _V ) ) |
27 |
26
|
simpld |
|- ( ph -> I e. _V ) |
28 |
1 7 12 2 27
|
psrbas |
|- ( ph -> B = ( ( Base ` R ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) |
29 |
22 23 28
|
3eltr4d |
|- ( ph -> ( X .+ Y ) e. B ) |