Metamath Proof Explorer


Theorem pwdom

Description: Injection of sets implies injection on power sets. (Contributed by Mario Carneiro, 9-Apr-2015)

Ref Expression
Assertion pwdom
|- ( A ~<_ B -> ~P A ~<_ ~P B )

Proof

Step Hyp Ref Expression
1 pweq
 |-  ( A = (/) -> ~P A = ~P (/) )
2 1 breq1d
 |-  ( A = (/) -> ( ~P A ~<_ ~P B <-> ~P (/) ~<_ ~P B ) )
3 reldom
 |-  Rel ~<_
4 3 brrelex1i
 |-  ( A ~<_ B -> A e. _V )
5 0sdomg
 |-  ( A e. _V -> ( (/) ~< A <-> A =/= (/) ) )
6 4 5 syl
 |-  ( A ~<_ B -> ( (/) ~< A <-> A =/= (/) ) )
7 6 biimpar
 |-  ( ( A ~<_ B /\ A =/= (/) ) -> (/) ~< A )
8 simpl
 |-  ( ( A ~<_ B /\ A =/= (/) ) -> A ~<_ B )
9 fodomr
 |-  ( ( (/) ~< A /\ A ~<_ B ) -> E. f f : B -onto-> A )
10 7 8 9 syl2anc
 |-  ( ( A ~<_ B /\ A =/= (/) ) -> E. f f : B -onto-> A )
11 vex
 |-  f e. _V
12 fopwdom
 |-  ( ( f e. _V /\ f : B -onto-> A ) -> ~P A ~<_ ~P B )
13 11 12 mpan
 |-  ( f : B -onto-> A -> ~P A ~<_ ~P B )
14 13 exlimiv
 |-  ( E. f f : B -onto-> A -> ~P A ~<_ ~P B )
15 10 14 syl
 |-  ( ( A ~<_ B /\ A =/= (/) ) -> ~P A ~<_ ~P B )
16 3 brrelex2i
 |-  ( A ~<_ B -> B e. _V )
17 16 pwexd
 |-  ( A ~<_ B -> ~P B e. _V )
18 0ss
 |-  (/) C_ B
19 18 sspwi
 |-  ~P (/) C_ ~P B
20 ssdomg
 |-  ( ~P B e. _V -> ( ~P (/) C_ ~P B -> ~P (/) ~<_ ~P B ) )
21 17 19 20 mpisyl
 |-  ( A ~<_ B -> ~P (/) ~<_ ~P B )
22 2 15 21 pm2.61ne
 |-  ( A ~<_ B -> ~P A ~<_ ~P B )