| Step |
Hyp |
Ref |
Expression |
| 1 |
|
quart.a |
|- ( ph -> A e. CC ) |
| 2 |
|
quart.b |
|- ( ph -> B e. CC ) |
| 3 |
|
quart.c |
|- ( ph -> C e. CC ) |
| 4 |
|
quart.d |
|- ( ph -> D e. CC ) |
| 5 |
|
quart.x |
|- ( ph -> X e. CC ) |
| 6 |
|
quart.e |
|- ( ph -> E = -u ( A / 4 ) ) |
| 7 |
|
quart.p |
|- ( ph -> P = ( B - ( ( 3 / 8 ) x. ( A ^ 2 ) ) ) ) |
| 8 |
|
quart.q |
|- ( ph -> Q = ( ( C - ( ( A x. B ) / 2 ) ) + ( ( A ^ 3 ) / 8 ) ) ) |
| 9 |
|
quart.r |
|- ( ph -> R = ( ( D - ( ( C x. A ) / 4 ) ) + ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) - ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) ) ) |
| 10 |
|
quart.u |
|- ( ph -> U = ( ( P ^ 2 ) + ( ; 1 2 x. R ) ) ) |
| 11 |
|
quart.v |
|- ( ph -> V = ( ( -u ( 2 x. ( P ^ 3 ) ) - ( ; 2 7 x. ( Q ^ 2 ) ) ) + ( ; 7 2 x. ( P x. R ) ) ) ) |
| 12 |
|
quart.w |
|- ( ph -> W = ( sqrt ` ( ( V ^ 2 ) - ( 4 x. ( U ^ 3 ) ) ) ) ) |
| 13 |
|
quart.s |
|- ( ph -> S = ( ( sqrt ` M ) / 2 ) ) |
| 14 |
|
quart.m |
|- ( ph -> M = -u ( ( ( ( 2 x. P ) + T ) + ( U / T ) ) / 3 ) ) |
| 15 |
|
quart.t |
|- ( ph -> T = ( ( ( V + W ) / 2 ) ^c ( 1 / 3 ) ) ) |
| 16 |
|
quart.t0 |
|- ( ph -> T =/= 0 ) |
| 17 |
|
quart.m0 |
|- ( ph -> M =/= 0 ) |
| 18 |
|
quart.i |
|- ( ph -> I = ( sqrt ` ( ( -u ( S ^ 2 ) - ( P / 2 ) ) + ( ( Q / 4 ) / S ) ) ) ) |
| 19 |
|
quart.j |
|- ( ph -> J = ( sqrt ` ( ( -u ( S ^ 2 ) - ( P / 2 ) ) - ( ( Q / 4 ) / S ) ) ) ) |
| 20 |
1 2 3 4 1 6 7 8 9 10 11 12 13 14 15 16
|
quartlem3 |
|- ( ph -> ( S e. CC /\ M e. CC /\ T e. CC ) ) |
| 21 |
20
|
simp2d |
|- ( ph -> M e. CC ) |
| 22 |
21
|
sqrtcld |
|- ( ph -> ( sqrt ` M ) e. CC ) |
| 23 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
| 24 |
21
|
sqsqrtd |
|- ( ph -> ( ( sqrt ` M ) ^ 2 ) = M ) |
| 25 |
24 17
|
eqnetrd |
|- ( ph -> ( ( sqrt ` M ) ^ 2 ) =/= 0 ) |
| 26 |
|
sqne0 |
|- ( ( sqrt ` M ) e. CC -> ( ( ( sqrt ` M ) ^ 2 ) =/= 0 <-> ( sqrt ` M ) =/= 0 ) ) |
| 27 |
22 26
|
syl |
|- ( ph -> ( ( ( sqrt ` M ) ^ 2 ) =/= 0 <-> ( sqrt ` M ) =/= 0 ) ) |
| 28 |
25 27
|
mpbid |
|- ( ph -> ( sqrt ` M ) =/= 0 ) |
| 29 |
|
2ne0 |
|- 2 =/= 0 |
| 30 |
29
|
a1i |
|- ( ph -> 2 =/= 0 ) |
| 31 |
22 23 28 30
|
divne0d |
|- ( ph -> ( ( sqrt ` M ) / 2 ) =/= 0 ) |
| 32 |
13 31
|
eqnetrd |
|- ( ph -> S =/= 0 ) |
| 33 |
20
|
simp1d |
|- ( ph -> S e. CC ) |
| 34 |
33
|
sqcld |
|- ( ph -> ( S ^ 2 ) e. CC ) |
| 35 |
34
|
negcld |
|- ( ph -> -u ( S ^ 2 ) e. CC ) |
| 36 |
1 2 3 4 7 8 9
|
quart1cl |
|- ( ph -> ( P e. CC /\ Q e. CC /\ R e. CC ) ) |
| 37 |
36
|
simp1d |
|- ( ph -> P e. CC ) |
| 38 |
37
|
halfcld |
|- ( ph -> ( P / 2 ) e. CC ) |
| 39 |
35 38
|
subcld |
|- ( ph -> ( -u ( S ^ 2 ) - ( P / 2 ) ) e. CC ) |
| 40 |
36
|
simp2d |
|- ( ph -> Q e. CC ) |
| 41 |
|
4cn |
|- 4 e. CC |
| 42 |
41
|
a1i |
|- ( ph -> 4 e. CC ) |
| 43 |
|
4ne0 |
|- 4 =/= 0 |
| 44 |
43
|
a1i |
|- ( ph -> 4 =/= 0 ) |
| 45 |
40 42 44
|
divcld |
|- ( ph -> ( Q / 4 ) e. CC ) |
| 46 |
45 33 32
|
divcld |
|- ( ph -> ( ( Q / 4 ) / S ) e. CC ) |
| 47 |
39 46
|
addcld |
|- ( ph -> ( ( -u ( S ^ 2 ) - ( P / 2 ) ) + ( ( Q / 4 ) / S ) ) e. CC ) |
| 48 |
47
|
sqrtcld |
|- ( ph -> ( sqrt ` ( ( -u ( S ^ 2 ) - ( P / 2 ) ) + ( ( Q / 4 ) / S ) ) ) e. CC ) |
| 49 |
18 48
|
eqeltrd |
|- ( ph -> I e. CC ) |
| 50 |
39 46
|
subcld |
|- ( ph -> ( ( -u ( S ^ 2 ) - ( P / 2 ) ) - ( ( Q / 4 ) / S ) ) e. CC ) |
| 51 |
50
|
sqrtcld |
|- ( ph -> ( sqrt ` ( ( -u ( S ^ 2 ) - ( P / 2 ) ) - ( ( Q / 4 ) / S ) ) ) e. CC ) |
| 52 |
19 51
|
eqeltrd |
|- ( ph -> J e. CC ) |
| 53 |
32 49 52
|
3jca |
|- ( ph -> ( S =/= 0 /\ I e. CC /\ J e. CC ) ) |