| Step |
Hyp |
Ref |
Expression |
| 1 |
|
quart1.a |
|- ( ph -> A e. CC ) |
| 2 |
|
quart1.b |
|- ( ph -> B e. CC ) |
| 3 |
|
quart1.c |
|- ( ph -> C e. CC ) |
| 4 |
|
quart1.d |
|- ( ph -> D e. CC ) |
| 5 |
|
quart1.p |
|- ( ph -> P = ( B - ( ( 3 / 8 ) x. ( A ^ 2 ) ) ) ) |
| 6 |
|
quart1.q |
|- ( ph -> Q = ( ( C - ( ( A x. B ) / 2 ) ) + ( ( A ^ 3 ) / 8 ) ) ) |
| 7 |
|
quart1.r |
|- ( ph -> R = ( ( D - ( ( C x. A ) / 4 ) ) + ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) - ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) ) ) |
| 8 |
|
3cn |
|- 3 e. CC |
| 9 |
|
8cn |
|- 8 e. CC |
| 10 |
|
8nn |
|- 8 e. NN |
| 11 |
10
|
nnne0i |
|- 8 =/= 0 |
| 12 |
8 9 11
|
divcli |
|- ( 3 / 8 ) e. CC |
| 13 |
1
|
sqcld |
|- ( ph -> ( A ^ 2 ) e. CC ) |
| 14 |
|
mulcl |
|- ( ( ( 3 / 8 ) e. CC /\ ( A ^ 2 ) e. CC ) -> ( ( 3 / 8 ) x. ( A ^ 2 ) ) e. CC ) |
| 15 |
12 13 14
|
sylancr |
|- ( ph -> ( ( 3 / 8 ) x. ( A ^ 2 ) ) e. CC ) |
| 16 |
2 15
|
subcld |
|- ( ph -> ( B - ( ( 3 / 8 ) x. ( A ^ 2 ) ) ) e. CC ) |
| 17 |
5 16
|
eqeltrd |
|- ( ph -> P e. CC ) |
| 18 |
1 2
|
mulcld |
|- ( ph -> ( A x. B ) e. CC ) |
| 19 |
18
|
halfcld |
|- ( ph -> ( ( A x. B ) / 2 ) e. CC ) |
| 20 |
3 19
|
subcld |
|- ( ph -> ( C - ( ( A x. B ) / 2 ) ) e. CC ) |
| 21 |
|
3nn0 |
|- 3 e. NN0 |
| 22 |
|
expcl |
|- ( ( A e. CC /\ 3 e. NN0 ) -> ( A ^ 3 ) e. CC ) |
| 23 |
1 21 22
|
sylancl |
|- ( ph -> ( A ^ 3 ) e. CC ) |
| 24 |
9
|
a1i |
|- ( ph -> 8 e. CC ) |
| 25 |
11
|
a1i |
|- ( ph -> 8 =/= 0 ) |
| 26 |
23 24 25
|
divcld |
|- ( ph -> ( ( A ^ 3 ) / 8 ) e. CC ) |
| 27 |
20 26
|
addcld |
|- ( ph -> ( ( C - ( ( A x. B ) / 2 ) ) + ( ( A ^ 3 ) / 8 ) ) e. CC ) |
| 28 |
6 27
|
eqeltrd |
|- ( ph -> Q e. CC ) |
| 29 |
3 1
|
mulcld |
|- ( ph -> ( C x. A ) e. CC ) |
| 30 |
|
4cn |
|- 4 e. CC |
| 31 |
30
|
a1i |
|- ( ph -> 4 e. CC ) |
| 32 |
|
4ne0 |
|- 4 =/= 0 |
| 33 |
32
|
a1i |
|- ( ph -> 4 =/= 0 ) |
| 34 |
29 31 33
|
divcld |
|- ( ph -> ( ( C x. A ) / 4 ) e. CC ) |
| 35 |
4 34
|
subcld |
|- ( ph -> ( D - ( ( C x. A ) / 4 ) ) e. CC ) |
| 36 |
13 2
|
mulcld |
|- ( ph -> ( ( A ^ 2 ) x. B ) e. CC ) |
| 37 |
|
1nn0 |
|- 1 e. NN0 |
| 38 |
|
6nn |
|- 6 e. NN |
| 39 |
37 38
|
decnncl |
|- ; 1 6 e. NN |
| 40 |
39
|
nncni |
|- ; 1 6 e. CC |
| 41 |
40
|
a1i |
|- ( ph -> ; 1 6 e. CC ) |
| 42 |
39
|
nnne0i |
|- ; 1 6 =/= 0 |
| 43 |
42
|
a1i |
|- ( ph -> ; 1 6 =/= 0 ) |
| 44 |
36 41 43
|
divcld |
|- ( ph -> ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) e. CC ) |
| 45 |
|
2nn0 |
|- 2 e. NN0 |
| 46 |
|
5nn0 |
|- 5 e. NN0 |
| 47 |
45 46
|
deccl |
|- ; 2 5 e. NN0 |
| 48 |
47 38
|
decnncl |
|- ; ; 2 5 6 e. NN |
| 49 |
48
|
nncni |
|- ; ; 2 5 6 e. CC |
| 50 |
48
|
nnne0i |
|- ; ; 2 5 6 =/= 0 |
| 51 |
8 49 50
|
divcli |
|- ( 3 / ; ; 2 5 6 ) e. CC |
| 52 |
|
4nn0 |
|- 4 e. NN0 |
| 53 |
|
expcl |
|- ( ( A e. CC /\ 4 e. NN0 ) -> ( A ^ 4 ) e. CC ) |
| 54 |
1 52 53
|
sylancl |
|- ( ph -> ( A ^ 4 ) e. CC ) |
| 55 |
|
mulcl |
|- ( ( ( 3 / ; ; 2 5 6 ) e. CC /\ ( A ^ 4 ) e. CC ) -> ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) e. CC ) |
| 56 |
51 54 55
|
sylancr |
|- ( ph -> ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) e. CC ) |
| 57 |
44 56
|
subcld |
|- ( ph -> ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) - ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) e. CC ) |
| 58 |
35 57
|
addcld |
|- ( ph -> ( ( D - ( ( C x. A ) / 4 ) ) + ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) - ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) ) e. CC ) |
| 59 |
7 58
|
eqeltrd |
|- ( ph -> R e. CC ) |
| 60 |
17 28 59
|
3jca |
|- ( ph -> ( P e. CC /\ Q e. CC /\ R e. CC ) ) |