| Step | Hyp | Ref | Expression | 
						
							| 1 |  | quart1.a |  |-  ( ph -> A e. CC ) | 
						
							| 2 |  | quart1.b |  |-  ( ph -> B e. CC ) | 
						
							| 3 |  | quart1.c |  |-  ( ph -> C e. CC ) | 
						
							| 4 |  | quart1.d |  |-  ( ph -> D e. CC ) | 
						
							| 5 |  | quart1.p |  |-  ( ph -> P = ( B - ( ( 3 / 8 ) x. ( A ^ 2 ) ) ) ) | 
						
							| 6 |  | quart1.q |  |-  ( ph -> Q = ( ( C - ( ( A x. B ) / 2 ) ) + ( ( A ^ 3 ) / 8 ) ) ) | 
						
							| 7 |  | quart1.r |  |-  ( ph -> R = ( ( D - ( ( C x. A ) / 4 ) ) + ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) - ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) ) ) | 
						
							| 8 |  | 3cn |  |-  3 e. CC | 
						
							| 9 |  | 8cn |  |-  8 e. CC | 
						
							| 10 |  | 8nn |  |-  8 e. NN | 
						
							| 11 | 10 | nnne0i |  |-  8 =/= 0 | 
						
							| 12 | 8 9 11 | divcli |  |-  ( 3 / 8 ) e. CC | 
						
							| 13 | 1 | sqcld |  |-  ( ph -> ( A ^ 2 ) e. CC ) | 
						
							| 14 |  | mulcl |  |-  ( ( ( 3 / 8 ) e. CC /\ ( A ^ 2 ) e. CC ) -> ( ( 3 / 8 ) x. ( A ^ 2 ) ) e. CC ) | 
						
							| 15 | 12 13 14 | sylancr |  |-  ( ph -> ( ( 3 / 8 ) x. ( A ^ 2 ) ) e. CC ) | 
						
							| 16 | 2 15 | subcld |  |-  ( ph -> ( B - ( ( 3 / 8 ) x. ( A ^ 2 ) ) ) e. CC ) | 
						
							| 17 | 5 16 | eqeltrd |  |-  ( ph -> P e. CC ) | 
						
							| 18 | 1 2 | mulcld |  |-  ( ph -> ( A x. B ) e. CC ) | 
						
							| 19 | 18 | halfcld |  |-  ( ph -> ( ( A x. B ) / 2 ) e. CC ) | 
						
							| 20 | 3 19 | subcld |  |-  ( ph -> ( C - ( ( A x. B ) / 2 ) ) e. CC ) | 
						
							| 21 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 22 |  | expcl |  |-  ( ( A e. CC /\ 3 e. NN0 ) -> ( A ^ 3 ) e. CC ) | 
						
							| 23 | 1 21 22 | sylancl |  |-  ( ph -> ( A ^ 3 ) e. CC ) | 
						
							| 24 | 9 | a1i |  |-  ( ph -> 8 e. CC ) | 
						
							| 25 | 11 | a1i |  |-  ( ph -> 8 =/= 0 ) | 
						
							| 26 | 23 24 25 | divcld |  |-  ( ph -> ( ( A ^ 3 ) / 8 ) e. CC ) | 
						
							| 27 | 20 26 | addcld |  |-  ( ph -> ( ( C - ( ( A x. B ) / 2 ) ) + ( ( A ^ 3 ) / 8 ) ) e. CC ) | 
						
							| 28 | 6 27 | eqeltrd |  |-  ( ph -> Q e. CC ) | 
						
							| 29 | 3 1 | mulcld |  |-  ( ph -> ( C x. A ) e. CC ) | 
						
							| 30 |  | 4cn |  |-  4 e. CC | 
						
							| 31 | 30 | a1i |  |-  ( ph -> 4 e. CC ) | 
						
							| 32 |  | 4ne0 |  |-  4 =/= 0 | 
						
							| 33 | 32 | a1i |  |-  ( ph -> 4 =/= 0 ) | 
						
							| 34 | 29 31 33 | divcld |  |-  ( ph -> ( ( C x. A ) / 4 ) e. CC ) | 
						
							| 35 | 4 34 | subcld |  |-  ( ph -> ( D - ( ( C x. A ) / 4 ) ) e. CC ) | 
						
							| 36 | 13 2 | mulcld |  |-  ( ph -> ( ( A ^ 2 ) x. B ) e. CC ) | 
						
							| 37 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 38 |  | 6nn |  |-  6 e. NN | 
						
							| 39 | 37 38 | decnncl |  |-  ; 1 6 e. NN | 
						
							| 40 | 39 | nncni |  |-  ; 1 6 e. CC | 
						
							| 41 | 40 | a1i |  |-  ( ph -> ; 1 6 e. CC ) | 
						
							| 42 | 39 | nnne0i |  |-  ; 1 6 =/= 0 | 
						
							| 43 | 42 | a1i |  |-  ( ph -> ; 1 6 =/= 0 ) | 
						
							| 44 | 36 41 43 | divcld |  |-  ( ph -> ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) e. CC ) | 
						
							| 45 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 46 |  | 5nn0 |  |-  5 e. NN0 | 
						
							| 47 | 45 46 | deccl |  |-  ; 2 5 e. NN0 | 
						
							| 48 | 47 38 | decnncl |  |-  ; ; 2 5 6 e. NN | 
						
							| 49 | 48 | nncni |  |-  ; ; 2 5 6 e. CC | 
						
							| 50 | 48 | nnne0i |  |-  ; ; 2 5 6 =/= 0 | 
						
							| 51 | 8 49 50 | divcli |  |-  ( 3 / ; ; 2 5 6 ) e. CC | 
						
							| 52 |  | 4nn0 |  |-  4 e. NN0 | 
						
							| 53 |  | expcl |  |-  ( ( A e. CC /\ 4 e. NN0 ) -> ( A ^ 4 ) e. CC ) | 
						
							| 54 | 1 52 53 | sylancl |  |-  ( ph -> ( A ^ 4 ) e. CC ) | 
						
							| 55 |  | mulcl |  |-  ( ( ( 3 / ; ; 2 5 6 ) e. CC /\ ( A ^ 4 ) e. CC ) -> ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) e. CC ) | 
						
							| 56 | 51 54 55 | sylancr |  |-  ( ph -> ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) e. CC ) | 
						
							| 57 | 44 56 | subcld |  |-  ( ph -> ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) - ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) e. CC ) | 
						
							| 58 | 35 57 | addcld |  |-  ( ph -> ( ( D - ( ( C x. A ) / 4 ) ) + ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) - ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) ) e. CC ) | 
						
							| 59 | 7 58 | eqeltrd |  |-  ( ph -> R e. CC ) | 
						
							| 60 | 17 28 59 | 3jca |  |-  ( ph -> ( P e. CC /\ Q e. CC /\ R e. CC ) ) |