| Step |
Hyp |
Ref |
Expression |
| 1 |
|
quart1.a |
|- ( ph -> A e. CC ) |
| 2 |
|
quart1.b |
|- ( ph -> B e. CC ) |
| 3 |
|
quart1.c |
|- ( ph -> C e. CC ) |
| 4 |
|
quart1.d |
|- ( ph -> D e. CC ) |
| 5 |
|
quart1.p |
|- ( ph -> P = ( B - ( ( 3 / 8 ) x. ( A ^ 2 ) ) ) ) |
| 6 |
|
quart1.q |
|- ( ph -> Q = ( ( C - ( ( A x. B ) / 2 ) ) + ( ( A ^ 3 ) / 8 ) ) ) |
| 7 |
|
quart1.r |
|- ( ph -> R = ( ( D - ( ( C x. A ) / 4 ) ) + ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) - ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) ) ) |
| 8 |
|
quart1.x |
|- ( ph -> X e. CC ) |
| 9 |
|
quart1.y |
|- ( ph -> Y = ( X + ( A / 4 ) ) ) |
| 10 |
1 2
|
mulcld |
|- ( ph -> ( A x. B ) e. CC ) |
| 11 |
10
|
halfcld |
|- ( ph -> ( ( A x. B ) / 2 ) e. CC ) |
| 12 |
3 11
|
subcld |
|- ( ph -> ( C - ( ( A x. B ) / 2 ) ) e. CC ) |
| 13 |
|
3nn0 |
|- 3 e. NN0 |
| 14 |
|
expcl |
|- ( ( A e. CC /\ 3 e. NN0 ) -> ( A ^ 3 ) e. CC ) |
| 15 |
1 13 14
|
sylancl |
|- ( ph -> ( A ^ 3 ) e. CC ) |
| 16 |
|
8cn |
|- 8 e. CC |
| 17 |
16
|
a1i |
|- ( ph -> 8 e. CC ) |
| 18 |
|
8nn |
|- 8 e. NN |
| 19 |
18
|
nnne0i |
|- 8 =/= 0 |
| 20 |
19
|
a1i |
|- ( ph -> 8 =/= 0 ) |
| 21 |
15 17 20
|
divcld |
|- ( ph -> ( ( A ^ 3 ) / 8 ) e. CC ) |
| 22 |
|
4cn |
|- 4 e. CC |
| 23 |
22
|
a1i |
|- ( ph -> 4 e. CC ) |
| 24 |
|
4ne0 |
|- 4 =/= 0 |
| 25 |
24
|
a1i |
|- ( ph -> 4 =/= 0 ) |
| 26 |
1 23 25
|
divcld |
|- ( ph -> ( A / 4 ) e. CC ) |
| 27 |
12 21 26
|
adddird |
|- ( ph -> ( ( ( C - ( ( A x. B ) / 2 ) ) + ( ( A ^ 3 ) / 8 ) ) x. ( A / 4 ) ) = ( ( ( C - ( ( A x. B ) / 2 ) ) x. ( A / 4 ) ) + ( ( ( A ^ 3 ) / 8 ) x. ( A / 4 ) ) ) ) |
| 28 |
6
|
oveq1d |
|- ( ph -> ( Q x. ( A / 4 ) ) = ( ( ( C - ( ( A x. B ) / 2 ) ) + ( ( A ^ 3 ) / 8 ) ) x. ( A / 4 ) ) ) |
| 29 |
3 1 23 25
|
divassd |
|- ( ph -> ( ( C x. A ) / 4 ) = ( C x. ( A / 4 ) ) ) |
| 30 |
1
|
sqvald |
|- ( ph -> ( A ^ 2 ) = ( A x. A ) ) |
| 31 |
30
|
oveq1d |
|- ( ph -> ( ( A ^ 2 ) x. B ) = ( ( A x. A ) x. B ) ) |
| 32 |
1 1 2
|
mul32d |
|- ( ph -> ( ( A x. A ) x. B ) = ( ( A x. B ) x. A ) ) |
| 33 |
31 32
|
eqtrd |
|- ( ph -> ( ( A ^ 2 ) x. B ) = ( ( A x. B ) x. A ) ) |
| 34 |
33
|
oveq1d |
|- ( ph -> ( ( ( A ^ 2 ) x. B ) / 8 ) = ( ( ( A x. B ) x. A ) / 8 ) ) |
| 35 |
|
2cn |
|- 2 e. CC |
| 36 |
|
4t2e8 |
|- ( 4 x. 2 ) = 8 |
| 37 |
22 35 36
|
mulcomli |
|- ( 2 x. 4 ) = 8 |
| 38 |
37
|
oveq2i |
|- ( ( ( A x. B ) x. A ) / ( 2 x. 4 ) ) = ( ( ( A x. B ) x. A ) / 8 ) |
| 39 |
34 38
|
eqtr4di |
|- ( ph -> ( ( ( A ^ 2 ) x. B ) / 8 ) = ( ( ( A x. B ) x. A ) / ( 2 x. 4 ) ) ) |
| 40 |
35
|
a1i |
|- ( ph -> 2 e. CC ) |
| 41 |
|
2ne0 |
|- 2 =/= 0 |
| 42 |
41
|
a1i |
|- ( ph -> 2 =/= 0 ) |
| 43 |
10 40 1 23 42 25
|
divmuldivd |
|- ( ph -> ( ( ( A x. B ) / 2 ) x. ( A / 4 ) ) = ( ( ( A x. B ) x. A ) / ( 2 x. 4 ) ) ) |
| 44 |
39 43
|
eqtr4d |
|- ( ph -> ( ( ( A ^ 2 ) x. B ) / 8 ) = ( ( ( A x. B ) / 2 ) x. ( A / 4 ) ) ) |
| 45 |
29 44
|
oveq12d |
|- ( ph -> ( ( ( C x. A ) / 4 ) - ( ( ( A ^ 2 ) x. B ) / 8 ) ) = ( ( C x. ( A / 4 ) ) - ( ( ( A x. B ) / 2 ) x. ( A / 4 ) ) ) ) |
| 46 |
3 11 26
|
subdird |
|- ( ph -> ( ( C - ( ( A x. B ) / 2 ) ) x. ( A / 4 ) ) = ( ( C x. ( A / 4 ) ) - ( ( ( A x. B ) / 2 ) x. ( A / 4 ) ) ) ) |
| 47 |
45 46
|
eqtr4d |
|- ( ph -> ( ( ( C x. A ) / 4 ) - ( ( ( A ^ 2 ) x. B ) / 8 ) ) = ( ( C - ( ( A x. B ) / 2 ) ) x. ( A / 4 ) ) ) |
| 48 |
|
df-4 |
|- 4 = ( 3 + 1 ) |
| 49 |
48
|
oveq2i |
|- ( A ^ 4 ) = ( A ^ ( 3 + 1 ) ) |
| 50 |
|
expp1 |
|- ( ( A e. CC /\ 3 e. NN0 ) -> ( A ^ ( 3 + 1 ) ) = ( ( A ^ 3 ) x. A ) ) |
| 51 |
1 13 50
|
sylancl |
|- ( ph -> ( A ^ ( 3 + 1 ) ) = ( ( A ^ 3 ) x. A ) ) |
| 52 |
49 51
|
eqtrid |
|- ( ph -> ( A ^ 4 ) = ( ( A ^ 3 ) x. A ) ) |
| 53 |
52
|
oveq1d |
|- ( ph -> ( ( A ^ 4 ) / 8 ) = ( ( ( A ^ 3 ) x. A ) / 8 ) ) |
| 54 |
15 1 17 20
|
div23d |
|- ( ph -> ( ( ( A ^ 3 ) x. A ) / 8 ) = ( ( ( A ^ 3 ) / 8 ) x. A ) ) |
| 55 |
53 54
|
eqtrd |
|- ( ph -> ( ( A ^ 4 ) / 8 ) = ( ( ( A ^ 3 ) / 8 ) x. A ) ) |
| 56 |
55
|
oveq1d |
|- ( ph -> ( ( ( A ^ 4 ) / 8 ) / 4 ) = ( ( ( ( A ^ 3 ) / 8 ) x. A ) / 4 ) ) |
| 57 |
21 1 23 25
|
divassd |
|- ( ph -> ( ( ( ( A ^ 3 ) / 8 ) x. A ) / 4 ) = ( ( ( A ^ 3 ) / 8 ) x. ( A / 4 ) ) ) |
| 58 |
56 57
|
eqtrd |
|- ( ph -> ( ( ( A ^ 4 ) / 8 ) / 4 ) = ( ( ( A ^ 3 ) / 8 ) x. ( A / 4 ) ) ) |
| 59 |
47 58
|
oveq12d |
|- ( ph -> ( ( ( ( C x. A ) / 4 ) - ( ( ( A ^ 2 ) x. B ) / 8 ) ) + ( ( ( A ^ 4 ) / 8 ) / 4 ) ) = ( ( ( C - ( ( A x. B ) / 2 ) ) x. ( A / 4 ) ) + ( ( ( A ^ 3 ) / 8 ) x. ( A / 4 ) ) ) ) |
| 60 |
27 28 59
|
3eqtr4d |
|- ( ph -> ( Q x. ( A / 4 ) ) = ( ( ( ( C x. A ) / 4 ) - ( ( ( A ^ 2 ) x. B ) / 8 ) ) + ( ( ( A ^ 4 ) / 8 ) / 4 ) ) ) |
| 61 |
3 1
|
mulcld |
|- ( ph -> ( C x. A ) e. CC ) |
| 62 |
61 23 25
|
divcld |
|- ( ph -> ( ( C x. A ) / 4 ) e. CC ) |
| 63 |
1
|
sqcld |
|- ( ph -> ( A ^ 2 ) e. CC ) |
| 64 |
63 2
|
mulcld |
|- ( ph -> ( ( A ^ 2 ) x. B ) e. CC ) |
| 65 |
64 17 20
|
divcld |
|- ( ph -> ( ( ( A ^ 2 ) x. B ) / 8 ) e. CC ) |
| 66 |
|
4nn0 |
|- 4 e. NN0 |
| 67 |
|
expcl |
|- ( ( A e. CC /\ 4 e. NN0 ) -> ( A ^ 4 ) e. CC ) |
| 68 |
1 66 67
|
sylancl |
|- ( ph -> ( A ^ 4 ) e. CC ) |
| 69 |
68 17 20
|
divcld |
|- ( ph -> ( ( A ^ 4 ) / 8 ) e. CC ) |
| 70 |
69 23 25
|
divcld |
|- ( ph -> ( ( ( A ^ 4 ) / 8 ) / 4 ) e. CC ) |
| 71 |
62 65 70
|
subadd23d |
|- ( ph -> ( ( ( ( C x. A ) / 4 ) - ( ( ( A ^ 2 ) x. B ) / 8 ) ) + ( ( ( A ^ 4 ) / 8 ) / 4 ) ) = ( ( ( C x. A ) / 4 ) + ( ( ( ( A ^ 4 ) / 8 ) / 4 ) - ( ( ( A ^ 2 ) x. B ) / 8 ) ) ) ) |
| 72 |
70 65
|
subcld |
|- ( ph -> ( ( ( ( A ^ 4 ) / 8 ) / 4 ) - ( ( ( A ^ 2 ) x. B ) / 8 ) ) e. CC ) |
| 73 |
62 72
|
addcomd |
|- ( ph -> ( ( ( C x. A ) / 4 ) + ( ( ( ( A ^ 4 ) / 8 ) / 4 ) - ( ( ( A ^ 2 ) x. B ) / 8 ) ) ) = ( ( ( ( ( A ^ 4 ) / 8 ) / 4 ) - ( ( ( A ^ 2 ) x. B ) / 8 ) ) + ( ( C x. A ) / 4 ) ) ) |
| 74 |
60 71 73
|
3eqtrd |
|- ( ph -> ( Q x. ( A / 4 ) ) = ( ( ( ( ( A ^ 4 ) / 8 ) / 4 ) - ( ( ( A ^ 2 ) x. B ) / 8 ) ) + ( ( C x. A ) / 4 ) ) ) |
| 75 |
|
1nn0 |
|- 1 e. NN0 |
| 76 |
|
6nn |
|- 6 e. NN |
| 77 |
75 76
|
decnncl |
|- ; 1 6 e. NN |
| 78 |
77
|
nncni |
|- ; 1 6 e. CC |
| 79 |
78
|
a1i |
|- ( ph -> ; 1 6 e. CC ) |
| 80 |
77
|
nnne0i |
|- ; 1 6 =/= 0 |
| 81 |
80
|
a1i |
|- ( ph -> ; 1 6 =/= 0 ) |
| 82 |
64 79 81
|
divcld |
|- ( ph -> ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) e. CC ) |
| 83 |
|
3cn |
|- 3 e. CC |
| 84 |
|
2nn0 |
|- 2 e. NN0 |
| 85 |
|
5nn0 |
|- 5 e. NN0 |
| 86 |
84 85
|
deccl |
|- ; 2 5 e. NN0 |
| 87 |
86 76
|
decnncl |
|- ; ; 2 5 6 e. NN |
| 88 |
87
|
nncni |
|- ; ; 2 5 6 e. CC |
| 89 |
87
|
nnne0i |
|- ; ; 2 5 6 =/= 0 |
| 90 |
83 88 89
|
divcli |
|- ( 3 / ; ; 2 5 6 ) e. CC |
| 91 |
|
mulcl |
|- ( ( ( 3 / ; ; 2 5 6 ) e. CC /\ ( A ^ 4 ) e. CC ) -> ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) e. CC ) |
| 92 |
90 68 91
|
sylancr |
|- ( ph -> ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) e. CC ) |
| 93 |
82 92
|
subcld |
|- ( ph -> ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) - ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) e. CC ) |
| 94 |
4 93 62
|
addsubd |
|- ( ph -> ( ( D + ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) - ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) ) - ( ( C x. A ) / 4 ) ) = ( ( D - ( ( C x. A ) / 4 ) ) + ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) - ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) ) ) |
| 95 |
7 94
|
eqtr4d |
|- ( ph -> R = ( ( D + ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) - ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) ) - ( ( C x. A ) / 4 ) ) ) |
| 96 |
74 95
|
oveq12d |
|- ( ph -> ( ( Q x. ( A / 4 ) ) + R ) = ( ( ( ( ( ( A ^ 4 ) / 8 ) / 4 ) - ( ( ( A ^ 2 ) x. B ) / 8 ) ) + ( ( C x. A ) / 4 ) ) + ( ( D + ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) - ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) ) - ( ( C x. A ) / 4 ) ) ) ) |
| 97 |
4 93
|
addcld |
|- ( ph -> ( D + ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) - ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) ) e. CC ) |
| 98 |
72 62 97
|
ppncand |
|- ( ph -> ( ( ( ( ( ( A ^ 4 ) / 8 ) / 4 ) - ( ( ( A ^ 2 ) x. B ) / 8 ) ) + ( ( C x. A ) / 4 ) ) + ( ( D + ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) - ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) ) - ( ( C x. A ) / 4 ) ) ) = ( ( ( ( ( A ^ 4 ) / 8 ) / 4 ) - ( ( ( A ^ 2 ) x. B ) / 8 ) ) + ( D + ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) - ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) ) ) ) |
| 99 |
72 4 93
|
add12d |
|- ( ph -> ( ( ( ( ( A ^ 4 ) / 8 ) / 4 ) - ( ( ( A ^ 2 ) x. B ) / 8 ) ) + ( D + ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) - ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) ) ) = ( D + ( ( ( ( ( A ^ 4 ) / 8 ) / 4 ) - ( ( ( A ^ 2 ) x. B ) / 8 ) ) + ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) - ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) ) ) ) |
| 100 |
65 92
|
addcld |
|- ( ph -> ( ( ( ( A ^ 2 ) x. B ) / 8 ) + ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) e. CC ) |
| 101 |
70 82
|
addcld |
|- ( ph -> ( ( ( ( A ^ 4 ) / 8 ) / 4 ) + ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) ) e. CC ) |
| 102 |
100 101
|
negsubdi2d |
|- ( ph -> -u ( ( ( ( ( A ^ 2 ) x. B ) / 8 ) + ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) - ( ( ( ( A ^ 4 ) / 8 ) / 4 ) + ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) ) ) = ( ( ( ( ( A ^ 4 ) / 8 ) / 4 ) + ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) ) - ( ( ( ( A ^ 2 ) x. B ) / 8 ) + ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) ) ) |
| 103 |
70 82
|
addcomd |
|- ( ph -> ( ( ( ( A ^ 4 ) / 8 ) / 4 ) + ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) ) = ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) + ( ( ( A ^ 4 ) / 8 ) / 4 ) ) ) |
| 104 |
103
|
oveq2d |
|- ( ph -> ( ( ( ( ( A ^ 2 ) x. B ) / 8 ) + ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) - ( ( ( ( A ^ 4 ) / 8 ) / 4 ) + ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) ) ) = ( ( ( ( ( A ^ 2 ) x. B ) / 8 ) + ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) - ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) + ( ( ( A ^ 4 ) / 8 ) / 4 ) ) ) ) |
| 105 |
65 92 82 70
|
addsub4d |
|- ( ph -> ( ( ( ( ( A ^ 2 ) x. B ) / 8 ) + ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) - ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) + ( ( ( A ^ 4 ) / 8 ) / 4 ) ) ) = ( ( ( ( ( A ^ 2 ) x. B ) / 8 ) - ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) ) + ( ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) - ( ( ( A ^ 4 ) / 8 ) / 4 ) ) ) ) |
| 106 |
83
|
a1i |
|- ( ph -> 3 e. CC ) |
| 107 |
88
|
a1i |
|- ( ph -> ; ; 2 5 6 e. CC ) |
| 108 |
89
|
a1i |
|- ( ph -> ; ; 2 5 6 =/= 0 ) |
| 109 |
106 68 107 108
|
divassd |
|- ( ph -> ( ( 3 x. ( A ^ 4 ) ) / ; ; 2 5 6 ) = ( 3 x. ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) |
| 110 |
106 68 107 108
|
div23d |
|- ( ph -> ( ( 3 x. ( A ^ 4 ) ) / ; ; 2 5 6 ) = ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) |
| 111 |
|
1p2e3 |
|- ( 1 + 2 ) = 3 |
| 112 |
111
|
oveq1i |
|- ( ( 1 + 2 ) x. ( ( A ^ 4 ) / ; ; 2 5 6 ) ) = ( 3 x. ( ( A ^ 4 ) / ; ; 2 5 6 ) ) |
| 113 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 114 |
68 107 108
|
divcld |
|- ( ph -> ( ( A ^ 4 ) / ; ; 2 5 6 ) e. CC ) |
| 115 |
113 40 114
|
adddird |
|- ( ph -> ( ( 1 + 2 ) x. ( ( A ^ 4 ) / ; ; 2 5 6 ) ) = ( ( 1 x. ( ( A ^ 4 ) / ; ; 2 5 6 ) ) + ( 2 x. ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) ) |
| 116 |
112 115
|
eqtr3id |
|- ( ph -> ( 3 x. ( ( A ^ 4 ) / ; ; 2 5 6 ) ) = ( ( 1 x. ( ( A ^ 4 ) / ; ; 2 5 6 ) ) + ( 2 x. ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) ) |
| 117 |
114
|
mullidd |
|- ( ph -> ( 1 x. ( ( A ^ 4 ) / ; ; 2 5 6 ) ) = ( ( A ^ 4 ) / ; ; 2 5 6 ) ) |
| 118 |
117
|
oveq1d |
|- ( ph -> ( ( 1 x. ( ( A ^ 4 ) / ; ; 2 5 6 ) ) + ( 2 x. ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) = ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( 2 x. ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) ) |
| 119 |
116 118
|
eqtrd |
|- ( ph -> ( 3 x. ( ( A ^ 4 ) / ; ; 2 5 6 ) ) = ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( 2 x. ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) ) |
| 120 |
109 110 119
|
3eqtr3d |
|- ( ph -> ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) = ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( 2 x. ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) ) |
| 121 |
48
|
oveq1i |
|- ( 4 x. ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) ) = ( ( 3 + 1 ) x. ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) ) |
| 122 |
70 23 25
|
divcld |
|- ( ph -> ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) e. CC ) |
| 123 |
106 113 122
|
adddird |
|- ( ph -> ( ( 3 + 1 ) x. ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) ) = ( ( 3 x. ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) ) + ( 1 x. ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) ) ) ) |
| 124 |
121 123
|
eqtrid |
|- ( ph -> ( 4 x. ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) ) = ( ( 3 x. ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) ) + ( 1 x. ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) ) ) ) |
| 125 |
70 23 25
|
divcan2d |
|- ( ph -> ( 4 x. ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) ) = ( ( ( A ^ 4 ) / 8 ) / 4 ) ) |
| 126 |
122
|
mullidd |
|- ( ph -> ( 1 x. ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) ) = ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) ) |
| 127 |
69 23 23 25 25
|
divdiv1d |
|- ( ph -> ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) = ( ( ( A ^ 4 ) / 8 ) / ( 4 x. 4 ) ) ) |
| 128 |
|
4t4e16 |
|- ( 4 x. 4 ) = ; 1 6 |
| 129 |
128
|
oveq2i |
|- ( ( ( A ^ 4 ) / 8 ) / ( 4 x. 4 ) ) = ( ( ( A ^ 4 ) / 8 ) / ; 1 6 ) |
| 130 |
127 129
|
eqtrdi |
|- ( ph -> ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) = ( ( ( A ^ 4 ) / 8 ) / ; 1 6 ) ) |
| 131 |
68 17 79 20 81
|
divdiv1d |
|- ( ph -> ( ( ( A ^ 4 ) / 8 ) / ; 1 6 ) = ( ( A ^ 4 ) / ( 8 x. ; 1 6 ) ) ) |
| 132 |
16 78
|
mulcli |
|- ( 8 x. ; 1 6 ) e. CC |
| 133 |
132
|
a1i |
|- ( ph -> ( 8 x. ; 1 6 ) e. CC ) |
| 134 |
16 78 19 80
|
mulne0i |
|- ( 8 x. ; 1 6 ) =/= 0 |
| 135 |
134
|
a1i |
|- ( ph -> ( 8 x. ; 1 6 ) =/= 0 ) |
| 136 |
68 133 135
|
divcld |
|- ( ph -> ( ( A ^ 4 ) / ( 8 x. ; 1 6 ) ) e. CC ) |
| 137 |
136 40 42
|
divcan2d |
|- ( ph -> ( 2 x. ( ( ( A ^ 4 ) / ( 8 x. ; 1 6 ) ) / 2 ) ) = ( ( A ^ 4 ) / ( 8 x. ; 1 6 ) ) ) |
| 138 |
68 133 40 135 42
|
divdiv1d |
|- ( ph -> ( ( ( A ^ 4 ) / ( 8 x. ; 1 6 ) ) / 2 ) = ( ( A ^ 4 ) / ( ( 8 x. ; 1 6 ) x. 2 ) ) ) |
| 139 |
16 78 35
|
mul32i |
|- ( ( 8 x. ; 1 6 ) x. 2 ) = ( ( 8 x. 2 ) x. ; 1 6 ) |
| 140 |
|
2exp4 |
|- ( 2 ^ 4 ) = ; 1 6 |
| 141 |
|
8t2e16 |
|- ( 8 x. 2 ) = ; 1 6 |
| 142 |
140 141
|
eqtr4i |
|- ( 2 ^ 4 ) = ( 8 x. 2 ) |
| 143 |
142 140
|
oveq12i |
|- ( ( 2 ^ 4 ) x. ( 2 ^ 4 ) ) = ( ( 8 x. 2 ) x. ; 1 6 ) |
| 144 |
|
4p4e8 |
|- ( 4 + 4 ) = 8 |
| 145 |
144
|
oveq2i |
|- ( 2 ^ ( 4 + 4 ) ) = ( 2 ^ 8 ) |
| 146 |
|
expadd |
|- ( ( 2 e. CC /\ 4 e. NN0 /\ 4 e. NN0 ) -> ( 2 ^ ( 4 + 4 ) ) = ( ( 2 ^ 4 ) x. ( 2 ^ 4 ) ) ) |
| 147 |
35 66 66 146
|
mp3an |
|- ( 2 ^ ( 4 + 4 ) ) = ( ( 2 ^ 4 ) x. ( 2 ^ 4 ) ) |
| 148 |
|
2exp8 |
|- ( 2 ^ 8 ) = ; ; 2 5 6 |
| 149 |
145 147 148
|
3eqtr3i |
|- ( ( 2 ^ 4 ) x. ( 2 ^ 4 ) ) = ; ; 2 5 6 |
| 150 |
139 143 149
|
3eqtr2i |
|- ( ( 8 x. ; 1 6 ) x. 2 ) = ; ; 2 5 6 |
| 151 |
150
|
oveq2i |
|- ( ( A ^ 4 ) / ( ( 8 x. ; 1 6 ) x. 2 ) ) = ( ( A ^ 4 ) / ; ; 2 5 6 ) |
| 152 |
138 151
|
eqtrdi |
|- ( ph -> ( ( ( A ^ 4 ) / ( 8 x. ; 1 6 ) ) / 2 ) = ( ( A ^ 4 ) / ; ; 2 5 6 ) ) |
| 153 |
152
|
oveq2d |
|- ( ph -> ( 2 x. ( ( ( A ^ 4 ) / ( 8 x. ; 1 6 ) ) / 2 ) ) = ( 2 x. ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) |
| 154 |
131 137 153
|
3eqtr2d |
|- ( ph -> ( ( ( A ^ 4 ) / 8 ) / ; 1 6 ) = ( 2 x. ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) |
| 155 |
126 130 154
|
3eqtrd |
|- ( ph -> ( 1 x. ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) ) = ( 2 x. ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) |
| 156 |
155
|
oveq2d |
|- ( ph -> ( ( 3 x. ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) ) + ( 1 x. ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) ) ) = ( ( 3 x. ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) ) + ( 2 x. ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) ) |
| 157 |
124 125 156
|
3eqtr3d |
|- ( ph -> ( ( ( A ^ 4 ) / 8 ) / 4 ) = ( ( 3 x. ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) ) + ( 2 x. ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) ) |
| 158 |
120 157
|
oveq12d |
|- ( ph -> ( ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) - ( ( ( A ^ 4 ) / 8 ) / 4 ) ) = ( ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( 2 x. ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) - ( ( 3 x. ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) ) + ( 2 x. ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) ) ) |
| 159 |
|
mulcl |
|- ( ( 3 e. CC /\ ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) e. CC ) -> ( 3 x. ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) ) e. CC ) |
| 160 |
83 122 159
|
sylancr |
|- ( ph -> ( 3 x. ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) ) e. CC ) |
| 161 |
|
mulcl |
|- ( ( 2 e. CC /\ ( ( A ^ 4 ) / ; ; 2 5 6 ) e. CC ) -> ( 2 x. ( ( A ^ 4 ) / ; ; 2 5 6 ) ) e. CC ) |
| 162 |
35 114 161
|
sylancr |
|- ( ph -> ( 2 x. ( ( A ^ 4 ) / ; ; 2 5 6 ) ) e. CC ) |
| 163 |
114 160 162
|
pnpcan2d |
|- ( ph -> ( ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( 2 x. ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) - ( ( 3 x. ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) ) + ( 2 x. ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) ) = ( ( ( A ^ 4 ) / ; ; 2 5 6 ) - ( 3 x. ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) ) ) ) |
| 164 |
158 163
|
eqtrd |
|- ( ph -> ( ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) - ( ( ( A ^ 4 ) / 8 ) / 4 ) ) = ( ( ( A ^ 4 ) / ; ; 2 5 6 ) - ( 3 x. ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) ) ) ) |
| 165 |
164
|
oveq2d |
|- ( ph -> ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) + ( ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) - ( ( ( A ^ 4 ) / 8 ) / 4 ) ) ) = ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) + ( ( ( A ^ 4 ) / ; ; 2 5 6 ) - ( 3 x. ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) ) ) ) ) |
| 166 |
82 114 160
|
addsub12d |
|- ( ph -> ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) + ( ( ( A ^ 4 ) / ; ; 2 5 6 ) - ( 3 x. ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) ) ) ) = ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) - ( 3 x. ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) ) ) ) ) |
| 167 |
165 166
|
eqtrd |
|- ( ph -> ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) + ( ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) - ( ( ( A ^ 4 ) / 8 ) / 4 ) ) ) = ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) - ( 3 x. ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) ) ) ) ) |
| 168 |
64 17 40 20 42
|
divdiv1d |
|- ( ph -> ( ( ( ( A ^ 2 ) x. B ) / 8 ) / 2 ) = ( ( ( A ^ 2 ) x. B ) / ( 8 x. 2 ) ) ) |
| 169 |
141
|
oveq2i |
|- ( ( ( A ^ 2 ) x. B ) / ( 8 x. 2 ) ) = ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) |
| 170 |
168 169
|
eqtrdi |
|- ( ph -> ( ( ( ( A ^ 2 ) x. B ) / 8 ) / 2 ) = ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) ) |
| 171 |
170
|
oveq2d |
|- ( ph -> ( 2 x. ( ( ( ( A ^ 2 ) x. B ) / 8 ) / 2 ) ) = ( 2 x. ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) ) ) |
| 172 |
65 40 42
|
divcan2d |
|- ( ph -> ( 2 x. ( ( ( ( A ^ 2 ) x. B ) / 8 ) / 2 ) ) = ( ( ( A ^ 2 ) x. B ) / 8 ) ) |
| 173 |
82
|
2timesd |
|- ( ph -> ( 2 x. ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) ) = ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) + ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) ) ) |
| 174 |
171 172 173
|
3eqtr3d |
|- ( ph -> ( ( ( A ^ 2 ) x. B ) / 8 ) = ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) + ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) ) ) |
| 175 |
82 82 174
|
mvrladdd |
|- ( ph -> ( ( ( ( A ^ 2 ) x. B ) / 8 ) - ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) ) = ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) ) |
| 176 |
175
|
oveq1d |
|- ( ph -> ( ( ( ( ( A ^ 2 ) x. B ) / 8 ) - ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) ) + ( ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) - ( ( ( A ^ 4 ) / 8 ) / 4 ) ) ) = ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) + ( ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) - ( ( ( A ^ 4 ) / 8 ) / 4 ) ) ) ) |
| 177 |
5
|
oveq1d |
|- ( ph -> ( P x. ( ( A / 4 ) ^ 2 ) ) = ( ( B - ( ( 3 / 8 ) x. ( A ^ 2 ) ) ) x. ( ( A / 4 ) ^ 2 ) ) ) |
| 178 |
83 16 19
|
divcli |
|- ( 3 / 8 ) e. CC |
| 179 |
|
mulcl |
|- ( ( ( 3 / 8 ) e. CC /\ ( A ^ 2 ) e. CC ) -> ( ( 3 / 8 ) x. ( A ^ 2 ) ) e. CC ) |
| 180 |
178 63 179
|
sylancr |
|- ( ph -> ( ( 3 / 8 ) x. ( A ^ 2 ) ) e. CC ) |
| 181 |
26
|
sqcld |
|- ( ph -> ( ( A / 4 ) ^ 2 ) e. CC ) |
| 182 |
2 180 181
|
subdird |
|- ( ph -> ( ( B - ( ( 3 / 8 ) x. ( A ^ 2 ) ) ) x. ( ( A / 4 ) ^ 2 ) ) = ( ( B x. ( ( A / 4 ) ^ 2 ) ) - ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( ( A / 4 ) ^ 2 ) ) ) ) |
| 183 |
1 23 25
|
sqdivd |
|- ( ph -> ( ( A / 4 ) ^ 2 ) = ( ( A ^ 2 ) / ( 4 ^ 2 ) ) ) |
| 184 |
22
|
sqvali |
|- ( 4 ^ 2 ) = ( 4 x. 4 ) |
| 185 |
184 128
|
eqtri |
|- ( 4 ^ 2 ) = ; 1 6 |
| 186 |
185
|
oveq2i |
|- ( ( A ^ 2 ) / ( 4 ^ 2 ) ) = ( ( A ^ 2 ) / ; 1 6 ) |
| 187 |
183 186
|
eqtrdi |
|- ( ph -> ( ( A / 4 ) ^ 2 ) = ( ( A ^ 2 ) / ; 1 6 ) ) |
| 188 |
187
|
oveq2d |
|- ( ph -> ( B x. ( ( A / 4 ) ^ 2 ) ) = ( B x. ( ( A ^ 2 ) / ; 1 6 ) ) ) |
| 189 |
2 63 79 81
|
divassd |
|- ( ph -> ( ( B x. ( A ^ 2 ) ) / ; 1 6 ) = ( B x. ( ( A ^ 2 ) / ; 1 6 ) ) ) |
| 190 |
2 63
|
mulcomd |
|- ( ph -> ( B x. ( A ^ 2 ) ) = ( ( A ^ 2 ) x. B ) ) |
| 191 |
190
|
oveq1d |
|- ( ph -> ( ( B x. ( A ^ 2 ) ) / ; 1 6 ) = ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) ) |
| 192 |
188 189 191
|
3eqtr2d |
|- ( ph -> ( B x. ( ( A / 4 ) ^ 2 ) ) = ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) ) |
| 193 |
178
|
a1i |
|- ( ph -> ( 3 / 8 ) e. CC ) |
| 194 |
193 63 63
|
mulassd |
|- ( ph -> ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( A ^ 2 ) ) = ( ( 3 / 8 ) x. ( ( A ^ 2 ) x. ( A ^ 2 ) ) ) ) |
| 195 |
106 68 17 20
|
div23d |
|- ( ph -> ( ( 3 x. ( A ^ 4 ) ) / 8 ) = ( ( 3 / 8 ) x. ( A ^ 4 ) ) ) |
| 196 |
|
2p2e4 |
|- ( 2 + 2 ) = 4 |
| 197 |
196
|
oveq2i |
|- ( A ^ ( 2 + 2 ) ) = ( A ^ 4 ) |
| 198 |
84
|
a1i |
|- ( ph -> 2 e. NN0 ) |
| 199 |
1 198 198
|
expaddd |
|- ( ph -> ( A ^ ( 2 + 2 ) ) = ( ( A ^ 2 ) x. ( A ^ 2 ) ) ) |
| 200 |
197 199
|
eqtr3id |
|- ( ph -> ( A ^ 4 ) = ( ( A ^ 2 ) x. ( A ^ 2 ) ) ) |
| 201 |
200
|
oveq2d |
|- ( ph -> ( ( 3 / 8 ) x. ( A ^ 4 ) ) = ( ( 3 / 8 ) x. ( ( A ^ 2 ) x. ( A ^ 2 ) ) ) ) |
| 202 |
195 201
|
eqtrd |
|- ( ph -> ( ( 3 x. ( A ^ 4 ) ) / 8 ) = ( ( 3 / 8 ) x. ( ( A ^ 2 ) x. ( A ^ 2 ) ) ) ) |
| 203 |
106 68 17 20
|
divassd |
|- ( ph -> ( ( 3 x. ( A ^ 4 ) ) / 8 ) = ( 3 x. ( ( A ^ 4 ) / 8 ) ) ) |
| 204 |
194 202 203
|
3eqtr2d |
|- ( ph -> ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( A ^ 2 ) ) = ( 3 x. ( ( A ^ 4 ) / 8 ) ) ) |
| 205 |
204
|
oveq1d |
|- ( ph -> ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( A ^ 2 ) ) / ( 4 ^ 2 ) ) = ( ( 3 x. ( ( A ^ 4 ) / 8 ) ) / ( 4 ^ 2 ) ) ) |
| 206 |
185 79
|
eqeltrid |
|- ( ph -> ( 4 ^ 2 ) e. CC ) |
| 207 |
185 80
|
eqnetri |
|- ( 4 ^ 2 ) =/= 0 |
| 208 |
207
|
a1i |
|- ( ph -> ( 4 ^ 2 ) =/= 0 ) |
| 209 |
180 63 206 208
|
divassd |
|- ( ph -> ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( A ^ 2 ) ) / ( 4 ^ 2 ) ) = ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( ( A ^ 2 ) / ( 4 ^ 2 ) ) ) ) |
| 210 |
106 69 206 208
|
divassd |
|- ( ph -> ( ( 3 x. ( ( A ^ 4 ) / 8 ) ) / ( 4 ^ 2 ) ) = ( 3 x. ( ( ( A ^ 4 ) / 8 ) / ( 4 ^ 2 ) ) ) ) |
| 211 |
205 209 210
|
3eqtr3d |
|- ( ph -> ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( ( A ^ 2 ) / ( 4 ^ 2 ) ) ) = ( 3 x. ( ( ( A ^ 4 ) / 8 ) / ( 4 ^ 2 ) ) ) ) |
| 212 |
183
|
oveq2d |
|- ( ph -> ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( ( A / 4 ) ^ 2 ) ) = ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( ( A ^ 2 ) / ( 4 ^ 2 ) ) ) ) |
| 213 |
185
|
oveq2i |
|- ( ( ( A ^ 4 ) / 8 ) / ( 4 ^ 2 ) ) = ( ( ( A ^ 4 ) / 8 ) / ; 1 6 ) |
| 214 |
130 213
|
eqtr4di |
|- ( ph -> ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) = ( ( ( A ^ 4 ) / 8 ) / ( 4 ^ 2 ) ) ) |
| 215 |
214
|
oveq2d |
|- ( ph -> ( 3 x. ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) ) = ( 3 x. ( ( ( A ^ 4 ) / 8 ) / ( 4 ^ 2 ) ) ) ) |
| 216 |
211 212 215
|
3eqtr4d |
|- ( ph -> ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( ( A / 4 ) ^ 2 ) ) = ( 3 x. ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) ) ) |
| 217 |
192 216
|
oveq12d |
|- ( ph -> ( ( B x. ( ( A / 4 ) ^ 2 ) ) - ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( ( A / 4 ) ^ 2 ) ) ) = ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) - ( 3 x. ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) ) ) ) |
| 218 |
177 182 217
|
3eqtrd |
|- ( ph -> ( P x. ( ( A / 4 ) ^ 2 ) ) = ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) - ( 3 x. ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) ) ) ) |
| 219 |
218
|
oveq2d |
|- ( ph -> ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) = ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) - ( 3 x. ( ( ( ( A ^ 4 ) / 8 ) / 4 ) / 4 ) ) ) ) ) |
| 220 |
167 176 219
|
3eqtr4d |
|- ( ph -> ( ( ( ( ( A ^ 2 ) x. B ) / 8 ) - ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) ) + ( ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) - ( ( ( A ^ 4 ) / 8 ) / 4 ) ) ) = ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) ) |
| 221 |
104 105 220
|
3eqtrd |
|- ( ph -> ( ( ( ( ( A ^ 2 ) x. B ) / 8 ) + ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) - ( ( ( ( A ^ 4 ) / 8 ) / 4 ) + ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) ) ) = ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) ) |
| 222 |
221
|
negeqd |
|- ( ph -> -u ( ( ( ( ( A ^ 2 ) x. B ) / 8 ) + ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) - ( ( ( ( A ^ 4 ) / 8 ) / 4 ) + ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) ) ) = -u ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) ) |
| 223 |
70 82 65 92
|
addsub4d |
|- ( ph -> ( ( ( ( ( A ^ 4 ) / 8 ) / 4 ) + ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) ) - ( ( ( ( A ^ 2 ) x. B ) / 8 ) + ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) ) = ( ( ( ( ( A ^ 4 ) / 8 ) / 4 ) - ( ( ( A ^ 2 ) x. B ) / 8 ) ) + ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) - ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) ) ) |
| 224 |
102 222 223
|
3eqtr3rd |
|- ( ph -> ( ( ( ( ( A ^ 4 ) / 8 ) / 4 ) - ( ( ( A ^ 2 ) x. B ) / 8 ) ) + ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) - ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) ) = -u ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) ) |
| 225 |
224
|
oveq2d |
|- ( ph -> ( D + ( ( ( ( ( A ^ 4 ) / 8 ) / 4 ) - ( ( ( A ^ 2 ) x. B ) / 8 ) ) + ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) - ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) ) ) = ( D + -u ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) ) ) |
| 226 |
2 180
|
subcld |
|- ( ph -> ( B - ( ( 3 / 8 ) x. ( A ^ 2 ) ) ) e. CC ) |
| 227 |
5 226
|
eqeltrd |
|- ( ph -> P e. CC ) |
| 228 |
227 181
|
mulcld |
|- ( ph -> ( P x. ( ( A / 4 ) ^ 2 ) ) e. CC ) |
| 229 |
114 228
|
addcld |
|- ( ph -> ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) e. CC ) |
| 230 |
4 229
|
negsubd |
|- ( ph -> ( D + -u ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) ) = ( D - ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) ) ) |
| 231 |
99 225 230
|
3eqtrd |
|- ( ph -> ( ( ( ( ( A ^ 4 ) / 8 ) / 4 ) - ( ( ( A ^ 2 ) x. B ) / 8 ) ) + ( D + ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) - ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) ) ) = ( D - ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) ) ) |
| 232 |
96 98 231
|
3eqtrd |
|- ( ph -> ( ( Q x. ( A / 4 ) ) + R ) = ( D - ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) ) ) |
| 233 |
232
|
oveq2d |
|- ( ph -> ( ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) + ( ( Q x. ( A / 4 ) ) + R ) ) = ( ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) + ( D - ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) ) ) ) |
| 234 |
229 4
|
pncan3d |
|- ( ph -> ( ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) + ( D - ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) ) ) = D ) |
| 235 |
233 234
|
eqtr2d |
|- ( ph -> D = ( ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) + ( ( Q x. ( A / 4 ) ) + R ) ) ) |