Metamath Proof Explorer


Theorem quart1lem

Description: Lemma for quart1 . (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses quart1.a φA
quart1.b φB
quart1.c φC
quart1.d φD
quart1.p φP=B38A2
quart1.q φQ=C-AB2+A38
quart1.r φR=DCA4+A2B16-3256A4
quart1.x φX
quart1.y φY=X+A4
Assertion quart1lem φD=A4256+PA42+QA4+R

Proof

Step Hyp Ref Expression
1 quart1.a φA
2 quart1.b φB
3 quart1.c φC
4 quart1.d φD
5 quart1.p φP=B38A2
6 quart1.q φQ=C-AB2+A38
7 quart1.r φR=DCA4+A2B16-3256A4
8 quart1.x φX
9 quart1.y φY=X+A4
10 1 2 mulcld φAB
11 10 halfcld φAB2
12 3 11 subcld φCAB2
13 3nn0 30
14 expcl A30A3
15 1 13 14 sylancl φA3
16 8cn 8
17 16 a1i φ8
18 8nn 8
19 18 nnne0i 80
20 19 a1i φ80
21 15 17 20 divcld φA38
22 4cn 4
23 22 a1i φ4
24 4ne0 40
25 24 a1i φ40
26 1 23 25 divcld φA4
27 12 21 26 adddird φC-AB2+A38A4=CAB2A4+A38A4
28 6 oveq1d φQA4=C-AB2+A38A4
29 3 1 23 25 divassd φCA4=CA4
30 1 sqvald φA2=AA
31 30 oveq1d φA2B=AAB
32 1 1 2 mul32d φAAB=ABA
33 31 32 eqtrd φA2B=ABA
34 33 oveq1d φA2B8=ABA8
35 2cn 2
36 4t2e8 42=8
37 22 35 36 mulcomli 24=8
38 37 oveq2i ABA24=ABA8
39 34 38 eqtr4di φA2B8=ABA24
40 35 a1i φ2
41 2ne0 20
42 41 a1i φ20
43 10 40 1 23 42 25 divmuldivd φAB2A4=ABA24
44 39 43 eqtr4d φA2B8=AB2A4
45 29 44 oveq12d φCA4A2B8=CA4AB2A4
46 3 11 26 subdird φCAB2A4=CA4AB2A4
47 45 46 eqtr4d φCA4A2B8=CAB2A4
48 df-4 4=3+1
49 48 oveq2i A4=A3+1
50 expp1 A30A3+1=A3A
51 1 13 50 sylancl φA3+1=A3A
52 49 51 eqtrid φA4=A3A
53 52 oveq1d φA48=A3A8
54 15 1 17 20 div23d φA3A8=A38A
55 53 54 eqtrd φA48=A38A
56 55 oveq1d φA484=A38A4
57 21 1 23 25 divassd φA38A4=A38A4
58 56 57 eqtrd φA484=A38A4
59 47 58 oveq12d φCA4-A2B8+A484=CAB2A4+A38A4
60 27 28 59 3eqtr4d φQA4=CA4-A2B8+A484
61 3 1 mulcld φCA
62 61 23 25 divcld φCA4
63 1 sqcld φA2
64 63 2 mulcld φA2B
65 64 17 20 divcld φA2B8
66 4nn0 40
67 expcl A40A4
68 1 66 67 sylancl φA4
69 68 17 20 divcld φA48
70 69 23 25 divcld φA484
71 62 65 70 subadd23d φCA4-A2B8+A484=CA4+A484-A2B8
72 70 65 subcld φA484A2B8
73 62 72 addcomd φCA4+A484-A2B8=A484-A2B8+CA4
74 60 71 73 3eqtrd φQA4=A484-A2B8+CA4
75 1nn0 10
76 6nn 6
77 75 76 decnncl 16
78 77 nncni 16
79 78 a1i φ16
80 77 nnne0i 160
81 80 a1i φ160
82 64 79 81 divcld φA2B16
83 3cn 3
84 2nn0 20
85 5nn0 50
86 84 85 deccl 250
87 86 76 decnncl 256
88 87 nncni 256
89 87 nnne0i 2560
90 83 88 89 divcli 3256
91 mulcl 3256A43256A4
92 90 68 91 sylancr φ3256A4
93 82 92 subcld φA2B163256A4
94 4 93 62 addsubd φD+A2B163256A4-CA4=DCA4+A2B16-3256A4
95 7 94 eqtr4d φR=D+A2B163256A4-CA4
96 74 95 oveq12d φQA4+R=A484A2B8+CA4+D+A2B163256A4-CA4
97 4 93 addcld φD+A2B16-3256A4
98 72 62 97 ppncand φA484A2B8+CA4+D+A2B163256A4-CA4=A484A2B8+D+A2B163256A4
99 72 4 93 add12d φA484A2B8+D+A2B163256A4=D+A484A2B8+A2B163256A4
100 65 92 addcld φA2B8+3256A4
101 70 82 addcld φA484+A2B16
102 100 101 negsubdi2d φA2B8+3256A4-A484+A2B16=A484+A2B16-A2B8+3256A4
103 70 82 addcomd φA484+A2B16=A2B16+A484
104 103 oveq2d φA2B8+3256A4-A484+A2B16=A2B8+3256A4-A2B16+A484
105 65 92 82 70 addsub4d φA2B8+3256A4-A2B16+A484=A2B8A2B16+3256A4-A484
106 83 a1i φ3
107 88 a1i φ256
108 89 a1i φ2560
109 106 68 107 108 divassd φ3A4256=3A4256
110 106 68 107 108 div23d φ3A4256=3256A4
111 1p2e3 1+2=3
112 111 oveq1i 1+2A4256=3A4256
113 1cnd φ1
114 68 107 108 divcld φA4256
115 113 40 114 adddird φ1+2A4256=1A4256+2A4256
116 112 115 eqtr3id φ3A4256=1A4256+2A4256
117 114 mullidd φ1A4256=A4256
118 117 oveq1d φ1A4256+2A4256=A4256+2A4256
119 116 118 eqtrd φ3A4256=A4256+2A4256
120 109 110 119 3eqtr3d φ3256A4=A4256+2A4256
121 48 oveq1i 4A4844=3+1A4844
122 70 23 25 divcld φA4844
123 106 113 122 adddird φ3+1A4844=3A4844+1A4844
124 121 123 eqtrid φ4A4844=3A4844+1A4844
125 70 23 25 divcan2d φ4A4844=A484
126 122 mullidd φ1A4844=A4844
127 69 23 23 25 25 divdiv1d φA4844=A4844
128 4t4e16 44=16
129 128 oveq2i A4844=A4816
130 127 129 eqtrdi φA4844=A4816
131 68 17 79 20 81 divdiv1d φA4816=A4816
132 16 78 mulcli 816
133 132 a1i φ816
134 16 78 19 80 mulne0i 8160
135 134 a1i φ8160
136 68 133 135 divcld φA4816
137 136 40 42 divcan2d φ2A48162=A4816
138 68 133 40 135 42 divdiv1d φA48162=A48162
139 16 78 35 mul32i 8162=8216
140 2exp4 24=16
141 8t2e16 82=16
142 140 141 eqtr4i 24=82
143 142 140 oveq12i 2424=8216
144 4p4e8 4+4=8
145 144 oveq2i 24+4=28
146 expadd 2404024+4=2424
147 35 66 66 146 mp3an 24+4=2424
148 2exp8 28=256
149 145 147 148 3eqtr3i 2424=256
150 139 143 149 3eqtr2i 8162=256
151 150 oveq2i A48162=A4256
152 138 151 eqtrdi φA48162=A4256
153 152 oveq2d φ2A48162=2A4256
154 131 137 153 3eqtr2d φA4816=2A4256
155 126 130 154 3eqtrd φ1A4844=2A4256
156 155 oveq2d φ3A4844+1A4844=3A4844+2A4256
157 124 125 156 3eqtr3d φA484=3A4844+2A4256
158 120 157 oveq12d φ3256A4A484=A4256+2A4256-3A4844+2A4256
159 mulcl 3A48443A4844
160 83 122 159 sylancr φ3A4844
161 mulcl 2A42562A4256
162 35 114 161 sylancr φ2A4256
163 114 160 162 pnpcan2d φA4256+2A4256-3A4844+2A4256=A42563A4844
164 158 163 eqtrd φ3256A4A484=A42563A4844
165 164 oveq2d φA2B16+3256A4-A484=A2B16+A4256-3A4844
166 82 114 160 addsub12d φA2B16+A4256-3A4844=A4256+A2B16-3A4844
167 165 166 eqtrd φA2B16+3256A4-A484=A4256+A2B16-3A4844
168 64 17 40 20 42 divdiv1d φA2B82=A2B82
169 141 oveq2i A2B82=A2B16
170 168 169 eqtrdi φA2B82=A2B16
171 170 oveq2d φ2A2B82=2A2B16
172 65 40 42 divcan2d φ2A2B82=A2B8
173 82 2timesd φ2A2B16=A2B16+A2B16
174 171 172 173 3eqtr3d φA2B8=A2B16+A2B16
175 82 82 174 mvrladdd φA2B8A2B16=A2B16
176 175 oveq1d φA2B8A2B16+3256A4-A484=A2B16+3256A4-A484
177 5 oveq1d φPA42=B38A2A42
178 83 16 19 divcli 38
179 mulcl 38A238A2
180 178 63 179 sylancr φ38A2
181 26 sqcld φA42
182 2 180 181 subdird φB38A2A42=BA4238A2A42
183 1 23 25 sqdivd φA42=A242
184 22 sqvali 42=44
185 184 128 eqtri 42=16
186 185 oveq2i A242=A216
187 183 186 eqtrdi φA42=A216
188 187 oveq2d φBA42=BA216
189 2 63 79 81 divassd φBA216=BA216
190 2 63 mulcomd φBA2=A2B
191 190 oveq1d φBA216=A2B16
192 188 189 191 3eqtr2d φBA42=A2B16
193 178 a1i φ38
194 193 63 63 mulassd φ38A2A2=38A2A2
195 106 68 17 20 div23d φ3A48=38A4
196 2p2e4 2+2=4
197 196 oveq2i A2+2=A4
198 84 a1i φ20
199 1 198 198 expaddd φA2+2=A2A2
200 197 199 eqtr3id φA4=A2A2
201 200 oveq2d φ38A4=38A2A2
202 195 201 eqtrd φ3A48=38A2A2
203 106 68 17 20 divassd φ3A48=3A48
204 194 202 203 3eqtr2d φ38A2A2=3A48
205 204 oveq1d φ38A2A242=3A4842
206 185 79 eqeltrid φ42
207 185 80 eqnetri 420
208 207 a1i φ420
209 180 63 206 208 divassd φ38A2A242=38A2A242
210 106 69 206 208 divassd φ3A4842=3A4842
211 205 209 210 3eqtr3d φ38A2A242=3A4842
212 183 oveq2d φ38A2A42=38A2A242
213 185 oveq2i A4842=A4816
214 130 213 eqtr4di φA4844=A4842
215 214 oveq2d φ3A4844=3A4842
216 211 212 215 3eqtr4d φ38A2A42=3A4844
217 192 216 oveq12d φBA4238A2A42=A2B163A4844
218 177 182 217 3eqtrd φPA42=A2B163A4844
219 218 oveq2d φA4256+PA42=A4256+A2B16-3A4844
220 167 176 219 3eqtr4d φA2B8A2B16+3256A4-A484=A4256+PA42
221 104 105 220 3eqtrd φA2B8+3256A4-A484+A2B16=A4256+PA42
222 221 negeqd φA2B8+3256A4-A484+A2B16=A4256+PA42
223 70 82 65 92 addsub4d φA484+A2B16-A2B8+3256A4=A484A2B8+A2B16-3256A4
224 102 222 223 3eqtr3rd φA484A2B8+A2B16-3256A4=A4256+PA42
225 224 oveq2d φD+A484A2B8+A2B163256A4=D+A4256+PA42
226 2 180 subcld φB38A2
227 5 226 eqeltrd φP
228 227 181 mulcld φPA42
229 114 228 addcld φA4256+PA42
230 4 229 negsubd φD+A4256+PA42=DA4256+PA42
231 99 225 230 3eqtrd φA484A2B8+D+A2B163256A4=DA4256+PA42
232 96 98 231 3eqtrd φQA4+R=DA4256+PA42
233 232 oveq2d φA4256+PA42+QA4+R=A4256+PA42+DA4256+PA42
234 229 4 pncan3d φA4256+PA42+DA4256+PA42=D
235 233 234 eqtr2d φD=A4256+PA42+QA4+R