Metamath Proof Explorer


Theorem quart1

Description: Depress a quartic equation. (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses quart1.a φA
quart1.b φB
quart1.c φC
quart1.d φD
quart1.p φP=B38A2
quart1.q φQ=C-AB2+A38
quart1.r φR=DCA4+A2B16-3256A4
quart1.x φX
quart1.y φY=X+A4
Assertion quart1 φX4+AX3+BX2+CX+D=Y4+PY2+QY+R

Proof

Step Hyp Ref Expression
1 quart1.a φA
2 quart1.b φB
3 quart1.c φC
4 quart1.d φD
5 quart1.p φP=B38A2
6 quart1.q φQ=C-AB2+A38
7 quart1.r φR=DCA4+A2B16-3256A4
8 quart1.x φX
9 quart1.y φY=X+A4
10 9 oveq1d φY4=X+A44
11 4cn 4
12 11 a1i φ4
13 4ne0 40
14 13 a1i φ40
15 1 12 14 divcld φA4
16 binom4 XA4X+A44=X4+4X3A4+6X2A42+4XA43+A44
17 8 15 16 syl2anc φX+A44=X4+4X3A4+6X2A42+4XA43+A44
18 3nn0 30
19 expcl X30X3
20 8 18 19 sylancl φX3
21 12 20 15 mul12d φ4X3A4=X34A4
22 1 12 14 divcan2d φ4A4=A
23 22 oveq2d φX34A4=X3A
24 20 1 mulcomd φX3A=AX3
25 21 23 24 3eqtrd φ4X3A4=AX3
26 25 oveq2d φX4+4X3A4=X4+AX3
27 6nn 6
28 27 nncni 6
29 28 a1i φ6
30 15 sqcld φA42
31 8 sqcld φX2
32 29 30 31 mulassd φ6A42X2=6A42X2
33 3cn 3
34 2cn 2
35 3t2e6 32=6
36 33 34 35 mulcomli 23=6
37 8cn 8
38 8t2e16 82=16
39 37 34 38 mulcomli 28=16
40 36 39 oveq12i 2328=616
41 8nn 8
42 41 nnne0i 80
43 37 42 pm3.2i 880
44 2cnne0 220
45 divcan5 38802202328=38
46 33 43 44 45 mp3an 2328=38
47 40 46 eqtr3i 616=38
48 47 oveq2i A2616=A238
49 1 sqcld φA2
50 1nn0 10
51 50 27 decnncl 16
52 51 nncni 16
53 52 a1i φ16
54 51 nnne0i 160
55 54 a1i φ160
56 49 29 53 55 div12d φA2616=6A216
57 48 56 eqtr3id φA238=6A216
58 33 37 42 divcli 38
59 mulcom 38A238A2=A238
60 58 49 59 sylancr φ38A2=A238
61 1 12 14 sqdivd φA42=A242
62 11 sqvali 42=44
63 4t4e16 44=16
64 62 63 eqtri 42=16
65 64 oveq2i A242=A216
66 61 65 eqtrdi φA42=A216
67 66 oveq2d φ6A42=6A216
68 57 60 67 3eqtr4d φ38A2=6A42
69 68 oveq1d φ38A2X2=6A42X2
70 31 30 mulcomd φX2A42=A42X2
71 70 oveq2d φ6X2A42=6A42X2
72 32 69 71 3eqtr4rd φ6X2A42=38A2X2
73 expcl A430A43
74 15 18 73 sylancl φA43
75 12 8 74 mul12d φ4XA43=X4A43
76 12 74 mulcld φ4A43
77 8 76 mulcomd φX4A43=4A43X
78 df-3 3=2+1
79 78 oveq2i 43=42+1
80 2nn0 20
81 expp1 42042+1=424
82 11 80 81 mp2an 42+1=424
83 64 oveq1i 424=164
84 79 82 83 3eqtri 43=164
85 84 oveq2i A343=A3164
86 18 a1i φ30
87 1 12 14 86 expdivd φA43=A343
88 expcl A30A3
89 1 18 88 sylancl φA3
90 89 53 12 55 14 divdiv1d φA3164=A3164
91 85 87 90 3eqtr4a φA43=A3164
92 91 oveq2d φ4A43=4A3164
93 38 oveq2i A382=A316
94 37 a1i φ8
95 34 a1i φ2
96 42 a1i φ80
97 2ne0 20
98 97 a1i φ20
99 89 94 95 96 98 divdiv1d φA382=A382
100 89 53 55 divcld φA316
101 100 12 14 divcan2d φ4A3164=A316
102 93 99 101 3eqtr4a φA382=4A3164
103 92 102 eqtr4d φ4A43=A382
104 103 oveq1d φ4A43X=A382X
105 75 77 104 3eqtrd φ4XA43=A382X
106 4nn0 40
107 106 a1i φ40
108 1 12 14 107 expdivd φA44=A444
109 expmul 22040224=224
110 34 80 106 109 mp3an 224=224
111 4t2e8 42=8
112 11 34 111 mulcomli 24=8
113 112 oveq2i 224=28
114 110 113 eqtr3i 224=28
115 sq2 22=4
116 115 oveq1i 224=44
117 114 116 eqtr3i 28=44
118 2exp8 28=256
119 117 118 eqtr3i 44=256
120 119 oveq2i A444=A4256
121 108 120 eqtrdi φA44=A4256
122 105 121 oveq12d φ4XA43+A44=A382X+A4256
123 72 122 oveq12d φ6X2A42+4XA43+A44=38A2X2+A382X+A4256
124 26 123 oveq12d φX4+4X3A4+6X2A42+4XA43+A44=X4+AX3+38A2X2+A382X+A4256
125 10 17 124 3eqtrd φY4=X4+AX3+38A2X2+A382X+A4256
126 125 oveq1d φY4+PY2=X4+AX3+38A2X2+A382X+A4256+PY2
127 expcl X40X4
128 8 106 127 sylancl φX4
129 1 20 mulcld φAX3
130 128 129 addcld φX4+AX3
131 mulcl 38A238A2
132 58 49 131 sylancr φ38A2
133 132 31 mulcld φ38A2X2
134 89 94 96 divcld φA38
135 134 halfcld φA382
136 135 8 mulcld φA382X
137 expcl A40A4
138 1 106 137 sylancl φA4
139 5nn0 50
140 80 139 deccl 250
141 140 27 decnncl 256
142 141 nncni 256
143 142 a1i φ256
144 141 nnne0i 2560
145 144 a1i φ2560
146 138 143 145 divcld φA4256
147 136 146 addcld φA382X+A4256
148 133 147 addcld φ38A2X2+A382X+A4256
149 1 2 3 4 5 6 7 quart1cl φPQR
150 149 simp1d φP
151 8 15 addcld φX+A4
152 9 151 eqeltrd φY
153 152 sqcld φY2
154 150 153 mulcld φPY2
155 130 148 154 addassd φX4+AX3+38A2X2+A382X+A4256+PY2=X4+AX3+38A2X2+A382X+A4256+PY2
156 126 155 eqtrd φY4+PY2=X4+AX3+38A2X2+A382X+A4256+PY2
157 156 oveq1d φY4+PY2+QY+R=X4+AX3+38A2X2+A382X+A4256+PY2+QY+R
158 148 154 addcld φ38A2X2+A382X+A4256+PY2
159 149 simp2d φQ
160 159 152 mulcld φQY
161 149 simp3d φR
162 160 161 addcld φQY+R
163 130 158 162 addassd φX4+AX3+38A2X2+A382X+A4256+PY2+QY+R=X4+AX3+38A2X2+A382X+A4256+PY2+QY+R
164 9 oveq1d φY2=X+A42
165 binom2 XA4X+A42=X2+2XA4+A42
166 8 15 165 syl2anc φX+A42=X2+2XA4+A42
167 8 15 mulcld φXA4
168 mulcl 2XA42XA4
169 34 167 168 sylancr φ2XA4
170 31 169 30 addassd φX2+2XA4+A42=X2+2XA4+A42
171 164 166 170 3eqtrd φY2=X2+2XA4+A42
172 171 oveq2d φPY2=PX2+2XA4+A42
173 169 30 addcld φ2XA4+A42
174 150 31 173 adddid φPX2+2XA4+A42=PX2+P2XA4+A42
175 172 174 eqtrd φPY2=PX2+P2XA4+A42
176 175 oveq2d φ38A2X2+A382X+A4256+PY2=38A2X2+A382X+A4256+PX2+P2XA4+A42
177 150 31 mulcld φPX2
178 150 173 mulcld φP2XA4+A42
179 133 147 177 178 add4d φ38A2X2+A382X+A4256+PX2+P2XA4+A42=38A2X2+PX2+A382X+A4256+P2XA4+A42
180 132 150 31 adddird φ38A2+PX2=38A2X2+PX2
181 5 oveq2d φ38A2+P=38A2+B-38A2
182 132 2 pncan3d φ38A2+B-38A2=B
183 181 182 eqtrd φ38A2+P=B
184 183 oveq1d φ38A2+PX2=BX2
185 180 184 eqtr3d φ38A2X2+PX2=BX2
186 185 oveq1d φ38A2X2+PX2+A382X+A4256+P2XA4+A42=BX2+A382X+A4256+P2XA4+A42
187 176 179 186 3eqtrd φ38A2X2+A382X+A4256+PY2=BX2+A382X+A4256+P2XA4+A42
188 187 oveq1d φ38A2X2+A382X+A4256+PY2+QY+R=BX2+A382X+A4256+P2XA4+A42+QY+R
189 2 31 mulcld φBX2
190 147 178 addcld φA382X+A4256+P2XA4+A42
191 189 190 162 addassd φBX2+A382X+A4256+P2XA4+A42+QY+R=BX2+A382X+A4256+P2XA4+A42+QY+R
192 1 2 mulcld φAB
193 192 halfcld φAB2
194 193 134 subcld φAB2A38
195 194 8 mulcld φAB2A38X
196 150 30 mulcld φPA42
197 146 196 addcld φA4256+PA42
198 159 8 mulcld φQX
199 159 15 mulcld φQA4
200 199 161 addcld φQA4+R
201 195 197 198 200 add4d φAB2A38X+A4256+PA42+QX+QA4+R=AB2A38X+QX+A4256+PA42+QA4+R
202 150 169 30 adddid φP2XA4+A42=P2XA4+PA42
203 202 oveq2d φA382X+A4256+P2XA4+A42=A382X+A4256+P2XA4+PA42
204 150 169 mulcld φP2XA4
205 136 146 204 196 add4d φA382X+A4256+P2XA4+PA42=A382X+P2XA4+A4256+PA42
206 1 95 95 98 98 divdiv1d φA22=A22
207 2t2e4 22=4
208 207 oveq2i A22=A4
209 206 208 eqtrdi φA22=A4
210 209 oveq2d φ2A22=2A4
211 1 halfcld φA2
212 211 95 98 divcan2d φ2A22=A2
213 210 212 eqtr3d φ2A4=A2
214 213 oveq2d φX2A4=XA2
215 8 211 mulcomd φXA2=A2X
216 214 215 eqtrd φX2A4=A2X
217 216 oveq2d φPX2A4=PA2X
218 95 8 15 mul12d φ2XA4=X2A4
219 218 oveq2d φP2XA4=PX2A4
220 150 211 8 mulassd φPA2X=PA2X
221 217 219 220 3eqtr4d φP2XA4=PA2X
222 221 oveq2d φA382X+P2XA4=A382X+PA2X
223 150 211 mulcld φPA2
224 135 223 8 adddird φA382+PA2X=A382X+PA2X
225 5 oveq1d φPA2=B38A2A2
226 2 132 211 subdird φB38A2A2=BA238A2A2
227 2 1 95 98 divassd φBA2=BA2
228 2 1 mulcomd φBA=AB
229 228 oveq1d φBA2=AB2
230 227 229 eqtr3d φBA2=AB2
231 78 oveq2i A3=A2+1
232 expp1 A20A2+1=A2A
233 1 80 232 sylancl φA2+1=A2A
234 231 233 eqtrid φA3=A2A
235 234 oveq2d φ38A3=38A2A
236 33 a1i φ3
237 236 89 94 96 div23d φ3A38=38A3
238 58 a1i φ38
239 238 49 1 mulassd φ38A2A=38A2A
240 235 237 239 3eqtr4rd φ38A2A=3A38
241 236 89 94 96 divassd φ3A38=3A38
242 240 241 eqtrd φ38A2A=3A38
243 242 oveq1d φ38A2A2=3A382
244 132 1 95 98 divassd φ38A2A2=38A2A2
245 236 134 95 98 divassd φ3A382=3A382
246 243 244 245 3eqtr3d φ38A2A2=3A382
247 230 246 oveq12d φBA238A2A2=AB23A382
248 225 226 247 3eqtrd φPA2=AB23A382
249 248 oveq2d φA382+PA2=A382+AB2-3A382
250 mulcl 3A3823A382
251 33 135 250 sylancr φ3A382
252 135 193 251 addsub12d φA382+AB2-3A382=AB2+A382-3A382
253 193 251 135 subsub2d φAB23A382A382=AB2+A382-3A382
254 135 mullidd φ1A382=A382
255 254 oveq2d φ3A3821A382=3A382A382
256 3m1e2 31=2
257 256 oveq1i 31A382=2A382
258 1cnd φ1
259 236 258 135 subdird φ31A382=3A3821A382
260 134 95 98 divcan2d φ2A382=A38
261 257 259 260 3eqtr3a φ3A3821A382=A38
262 255 261 eqtr3d φ3A382A382=A38
263 262 oveq2d φAB23A382A382=AB2A38
264 252 253 263 3eqtr2d φA382+AB2-3A382=AB2A38
265 249 264 eqtrd φA382+PA2=AB2A38
266 265 oveq1d φA382+PA2X=AB2A38X
267 222 224 266 3eqtr2d φA382X+P2XA4=AB2A38X
268 267 oveq1d φA382X+P2XA4+A4256+PA42=AB2A38X+A4256+PA42
269 203 205 268 3eqtrd φA382X+A4256+P2XA4+A42=AB2A38X+A4256+PA42
270 9 oveq2d φQY=QX+A4
271 159 8 15 adddid φQX+A4=QX+QA4
272 270 271 eqtrd φQY=QX+QA4
273 272 oveq1d φQY+R=QX+QA4+R
274 198 199 161 addassd φQX+QA4+R=QX+QA4+R
275 273 274 eqtrd φQY+R=QX+QA4+R
276 269 275 oveq12d φA382X+A4256+P2XA4+A42+QY+R=AB2A38X+A4256+PA42+QX+QA4+R
277 194 159 addcomd φAB2-A38+Q=Q+AB2-A38
278 6 oveq1d φQ+AB2-A38=CAB2+A38+AB2A38
279 3 193 subcld φCAB2
280 279 134 193 ppncand φCAB2+A38+AB2A38=C-AB2+AB2
281 3 193 npcand φC-AB2+AB2=C
282 280 281 eqtrd φCAB2+A38+AB2A38=C
283 277 278 282 3eqtrd φAB2-A38+Q=C
284 283 oveq1d φAB2-A38+QX=CX
285 194 159 8 adddird φAB2-A38+QX=AB2A38X+QX
286 284 285 eqtr3d φCX=AB2A38X+QX
287 1 2 3 4 5 6 7 8 9 quart1lem φD=A4256+PA42+QA4+R
288 286 287 oveq12d φCX+D=AB2A38X+QX+A4256+PA42+QA4+R
289 201 276 288 3eqtr4d φA382X+A4256+P2XA4+A42+QY+R=CX+D
290 289 oveq2d φBX2+A382X+A4256+P2XA4+A42+QY+R=BX2+CX+D
291 188 191 290 3eqtrd φ38A2X2+A382X+A4256+PY2+QY+R=BX2+CX+D
292 291 oveq2d φX4+AX3+38A2X2+A382X+A4256+PY2+QY+R=X4+AX3+BX2+CX+D
293 157 163 292 3eqtrrd φX4+AX3+BX2+CX+D=Y4+PY2+QY+R