Metamath Proof Explorer


Theorem quart1cl

Description: Closure lemmas for quart . (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Hypotheses quart1.a φA
quart1.b φB
quart1.c φC
quart1.d φD
quart1.p φP=B38A2
quart1.q φQ=C-AB2+A38
quart1.r φR=DCA4+A2B16-3256A4
Assertion quart1cl φPQR

Proof

Step Hyp Ref Expression
1 quart1.a φA
2 quart1.b φB
3 quart1.c φC
4 quart1.d φD
5 quart1.p φP=B38A2
6 quart1.q φQ=C-AB2+A38
7 quart1.r φR=DCA4+A2B16-3256A4
8 3cn 3
9 8cn 8
10 8nn 8
11 10 nnne0i 80
12 8 9 11 divcli 38
13 1 sqcld φA2
14 mulcl 38A238A2
15 12 13 14 sylancr φ38A2
16 2 15 subcld φB38A2
17 5 16 eqeltrd φP
18 1 2 mulcld φAB
19 18 halfcld φAB2
20 3 19 subcld φCAB2
21 3nn0 30
22 expcl A30A3
23 1 21 22 sylancl φA3
24 9 a1i φ8
25 11 a1i φ80
26 23 24 25 divcld φA38
27 20 26 addcld φC-AB2+A38
28 6 27 eqeltrd φQ
29 3 1 mulcld φCA
30 4cn 4
31 30 a1i φ4
32 4ne0 40
33 32 a1i φ40
34 29 31 33 divcld φCA4
35 4 34 subcld φDCA4
36 13 2 mulcld φA2B
37 1nn0 10
38 6nn 6
39 37 38 decnncl 16
40 39 nncni 16
41 40 a1i φ16
42 39 nnne0i 160
43 42 a1i φ160
44 36 41 43 divcld φA2B16
45 2nn0 20
46 5nn0 50
47 45 46 deccl 250
48 47 38 decnncl 256
49 48 nncni 256
50 48 nnne0i 2560
51 8 49 50 divcli 3256
52 4nn0 40
53 expcl A40A4
54 1 52 53 sylancl φA4
55 mulcl 3256A43256A4
56 51 54 55 sylancr φ3256A4
57 44 56 subcld φA2B163256A4
58 35 57 addcld φDCA4+A2B16-3256A4
59 7 58 eqeltrd φR
60 17 28 59 3jca φPQR