| Step | Hyp | Ref | Expression | 
						
							| 1 |  | quart1.a | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | quart1.b | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | quart1.c | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 4 |  | quart1.d | ⊢ ( 𝜑  →  𝐷  ∈  ℂ ) | 
						
							| 5 |  | quart1.p | ⊢ ( 𝜑  →  𝑃  =  ( 𝐵  −  ( ( 3  /  8 )  ·  ( 𝐴 ↑ 2 ) ) ) ) | 
						
							| 6 |  | quart1.q | ⊢ ( 𝜑  →  𝑄  =  ( ( 𝐶  −  ( ( 𝐴  ·  𝐵 )  /  2 ) )  +  ( ( 𝐴 ↑ 3 )  /  8 ) ) ) | 
						
							| 7 |  | quart1.r | ⊢ ( 𝜑  →  𝑅  =  ( ( 𝐷  −  ( ( 𝐶  ·  𝐴 )  /  4 ) )  +  ( ( ( ( 𝐴 ↑ 2 )  ·  𝐵 )  /  ; 1 6 )  −  ( ( 3  /  ; ; 2 5 6 )  ·  ( 𝐴 ↑ 4 ) ) ) ) ) | 
						
							| 8 |  | 3cn | ⊢ 3  ∈  ℂ | 
						
							| 9 |  | 8cn | ⊢ 8  ∈  ℂ | 
						
							| 10 |  | 8nn | ⊢ 8  ∈  ℕ | 
						
							| 11 | 10 | nnne0i | ⊢ 8  ≠  0 | 
						
							| 12 | 8 9 11 | divcli | ⊢ ( 3  /  8 )  ∈  ℂ | 
						
							| 13 | 1 | sqcld | ⊢ ( 𝜑  →  ( 𝐴 ↑ 2 )  ∈  ℂ ) | 
						
							| 14 |  | mulcl | ⊢ ( ( ( 3  /  8 )  ∈  ℂ  ∧  ( 𝐴 ↑ 2 )  ∈  ℂ )  →  ( ( 3  /  8 )  ·  ( 𝐴 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 15 | 12 13 14 | sylancr | ⊢ ( 𝜑  →  ( ( 3  /  8 )  ·  ( 𝐴 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 16 | 2 15 | subcld | ⊢ ( 𝜑  →  ( 𝐵  −  ( ( 3  /  8 )  ·  ( 𝐴 ↑ 2 ) ) )  ∈  ℂ ) | 
						
							| 17 | 5 16 | eqeltrd | ⊢ ( 𝜑  →  𝑃  ∈  ℂ ) | 
						
							| 18 | 1 2 | mulcld | ⊢ ( 𝜑  →  ( 𝐴  ·  𝐵 )  ∈  ℂ ) | 
						
							| 19 | 18 | halfcld | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐵 )  /  2 )  ∈  ℂ ) | 
						
							| 20 | 3 19 | subcld | ⊢ ( 𝜑  →  ( 𝐶  −  ( ( 𝐴  ·  𝐵 )  /  2 ) )  ∈  ℂ ) | 
						
							| 21 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 22 |  | expcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  3  ∈  ℕ0 )  →  ( 𝐴 ↑ 3 )  ∈  ℂ ) | 
						
							| 23 | 1 21 22 | sylancl | ⊢ ( 𝜑  →  ( 𝐴 ↑ 3 )  ∈  ℂ ) | 
						
							| 24 | 9 | a1i | ⊢ ( 𝜑  →  8  ∈  ℂ ) | 
						
							| 25 | 11 | a1i | ⊢ ( 𝜑  →  8  ≠  0 ) | 
						
							| 26 | 23 24 25 | divcld | ⊢ ( 𝜑  →  ( ( 𝐴 ↑ 3 )  /  8 )  ∈  ℂ ) | 
						
							| 27 | 20 26 | addcld | ⊢ ( 𝜑  →  ( ( 𝐶  −  ( ( 𝐴  ·  𝐵 )  /  2 ) )  +  ( ( 𝐴 ↑ 3 )  /  8 ) )  ∈  ℂ ) | 
						
							| 28 | 6 27 | eqeltrd | ⊢ ( 𝜑  →  𝑄  ∈  ℂ ) | 
						
							| 29 | 3 1 | mulcld | ⊢ ( 𝜑  →  ( 𝐶  ·  𝐴 )  ∈  ℂ ) | 
						
							| 30 |  | 4cn | ⊢ 4  ∈  ℂ | 
						
							| 31 | 30 | a1i | ⊢ ( 𝜑  →  4  ∈  ℂ ) | 
						
							| 32 |  | 4ne0 | ⊢ 4  ≠  0 | 
						
							| 33 | 32 | a1i | ⊢ ( 𝜑  →  4  ≠  0 ) | 
						
							| 34 | 29 31 33 | divcld | ⊢ ( 𝜑  →  ( ( 𝐶  ·  𝐴 )  /  4 )  ∈  ℂ ) | 
						
							| 35 | 4 34 | subcld | ⊢ ( 𝜑  →  ( 𝐷  −  ( ( 𝐶  ·  𝐴 )  /  4 ) )  ∈  ℂ ) | 
						
							| 36 | 13 2 | mulcld | ⊢ ( 𝜑  →  ( ( 𝐴 ↑ 2 )  ·  𝐵 )  ∈  ℂ ) | 
						
							| 37 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 38 |  | 6nn | ⊢ 6  ∈  ℕ | 
						
							| 39 | 37 38 | decnncl | ⊢ ; 1 6  ∈  ℕ | 
						
							| 40 | 39 | nncni | ⊢ ; 1 6  ∈  ℂ | 
						
							| 41 | 40 | a1i | ⊢ ( 𝜑  →  ; 1 6  ∈  ℂ ) | 
						
							| 42 | 39 | nnne0i | ⊢ ; 1 6  ≠  0 | 
						
							| 43 | 42 | a1i | ⊢ ( 𝜑  →  ; 1 6  ≠  0 ) | 
						
							| 44 | 36 41 43 | divcld | ⊢ ( 𝜑  →  ( ( ( 𝐴 ↑ 2 )  ·  𝐵 )  /  ; 1 6 )  ∈  ℂ ) | 
						
							| 45 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 46 |  | 5nn0 | ⊢ 5  ∈  ℕ0 | 
						
							| 47 | 45 46 | deccl | ⊢ ; 2 5  ∈  ℕ0 | 
						
							| 48 | 47 38 | decnncl | ⊢ ; ; 2 5 6  ∈  ℕ | 
						
							| 49 | 48 | nncni | ⊢ ; ; 2 5 6  ∈  ℂ | 
						
							| 50 | 48 | nnne0i | ⊢ ; ; 2 5 6  ≠  0 | 
						
							| 51 | 8 49 50 | divcli | ⊢ ( 3  /  ; ; 2 5 6 )  ∈  ℂ | 
						
							| 52 |  | 4nn0 | ⊢ 4  ∈  ℕ0 | 
						
							| 53 |  | expcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  4  ∈  ℕ0 )  →  ( 𝐴 ↑ 4 )  ∈  ℂ ) | 
						
							| 54 | 1 52 53 | sylancl | ⊢ ( 𝜑  →  ( 𝐴 ↑ 4 )  ∈  ℂ ) | 
						
							| 55 |  | mulcl | ⊢ ( ( ( 3  /  ; ; 2 5 6 )  ∈  ℂ  ∧  ( 𝐴 ↑ 4 )  ∈  ℂ )  →  ( ( 3  /  ; ; 2 5 6 )  ·  ( 𝐴 ↑ 4 ) )  ∈  ℂ ) | 
						
							| 56 | 51 54 55 | sylancr | ⊢ ( 𝜑  →  ( ( 3  /  ; ; 2 5 6 )  ·  ( 𝐴 ↑ 4 ) )  ∈  ℂ ) | 
						
							| 57 | 44 56 | subcld | ⊢ ( 𝜑  →  ( ( ( ( 𝐴 ↑ 2 )  ·  𝐵 )  /  ; 1 6 )  −  ( ( 3  /  ; ; 2 5 6 )  ·  ( 𝐴 ↑ 4 ) ) )  ∈  ℂ ) | 
						
							| 58 | 35 57 | addcld | ⊢ ( 𝜑  →  ( ( 𝐷  −  ( ( 𝐶  ·  𝐴 )  /  4 ) )  +  ( ( ( ( 𝐴 ↑ 2 )  ·  𝐵 )  /  ; 1 6 )  −  ( ( 3  /  ; ; 2 5 6 )  ·  ( 𝐴 ↑ 4 ) ) ) )  ∈  ℂ ) | 
						
							| 59 | 7 58 | eqeltrd | ⊢ ( 𝜑  →  𝑅  ∈  ℂ ) | 
						
							| 60 | 17 28 59 | 3jca | ⊢ ( 𝜑  →  ( 𝑃  ∈  ℂ  ∧  𝑄  ∈  ℂ  ∧  𝑅  ∈  ℂ ) ) |