| Step |
Hyp |
Ref |
Expression |
| 1 |
|
quart1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 2 |
|
quart1.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 3 |
|
quart1.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 4 |
|
quart1.d |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 5 |
|
quart1.p |
⊢ ( 𝜑 → 𝑃 = ( 𝐵 − ( ( 3 / 8 ) · ( 𝐴 ↑ 2 ) ) ) ) |
| 6 |
|
quart1.q |
⊢ ( 𝜑 → 𝑄 = ( ( 𝐶 − ( ( 𝐴 · 𝐵 ) / 2 ) ) + ( ( 𝐴 ↑ 3 ) / 8 ) ) ) |
| 7 |
|
quart1.r |
⊢ ( 𝜑 → 𝑅 = ( ( 𝐷 − ( ( 𝐶 · 𝐴 ) / 4 ) ) + ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) − ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) ) ) |
| 8 |
|
3cn |
⊢ 3 ∈ ℂ |
| 9 |
|
8cn |
⊢ 8 ∈ ℂ |
| 10 |
|
8nn |
⊢ 8 ∈ ℕ |
| 11 |
10
|
nnne0i |
⊢ 8 ≠ 0 |
| 12 |
8 9 11
|
divcli |
⊢ ( 3 / 8 ) ∈ ℂ |
| 13 |
1
|
sqcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 14 |
|
mulcl |
⊢ ( ( ( 3 / 8 ) ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) → ( ( 3 / 8 ) · ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
| 15 |
12 13 14
|
sylancr |
⊢ ( 𝜑 → ( ( 3 / 8 ) · ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
| 16 |
2 15
|
subcld |
⊢ ( 𝜑 → ( 𝐵 − ( ( 3 / 8 ) · ( 𝐴 ↑ 2 ) ) ) ∈ ℂ ) |
| 17 |
5 16
|
eqeltrd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
| 18 |
1 2
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
| 19 |
18
|
halfcld |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) / 2 ) ∈ ℂ ) |
| 20 |
3 19
|
subcld |
⊢ ( 𝜑 → ( 𝐶 − ( ( 𝐴 · 𝐵 ) / 2 ) ) ∈ ℂ ) |
| 21 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 22 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝐴 ↑ 3 ) ∈ ℂ ) |
| 23 |
1 21 22
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 ↑ 3 ) ∈ ℂ ) |
| 24 |
9
|
a1i |
⊢ ( 𝜑 → 8 ∈ ℂ ) |
| 25 |
11
|
a1i |
⊢ ( 𝜑 → 8 ≠ 0 ) |
| 26 |
23 24 25
|
divcld |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 3 ) / 8 ) ∈ ℂ ) |
| 27 |
20 26
|
addcld |
⊢ ( 𝜑 → ( ( 𝐶 − ( ( 𝐴 · 𝐵 ) / 2 ) ) + ( ( 𝐴 ↑ 3 ) / 8 ) ) ∈ ℂ ) |
| 28 |
6 27
|
eqeltrd |
⊢ ( 𝜑 → 𝑄 ∈ ℂ ) |
| 29 |
3 1
|
mulcld |
⊢ ( 𝜑 → ( 𝐶 · 𝐴 ) ∈ ℂ ) |
| 30 |
|
4cn |
⊢ 4 ∈ ℂ |
| 31 |
30
|
a1i |
⊢ ( 𝜑 → 4 ∈ ℂ ) |
| 32 |
|
4ne0 |
⊢ 4 ≠ 0 |
| 33 |
32
|
a1i |
⊢ ( 𝜑 → 4 ≠ 0 ) |
| 34 |
29 31 33
|
divcld |
⊢ ( 𝜑 → ( ( 𝐶 · 𝐴 ) / 4 ) ∈ ℂ ) |
| 35 |
4 34
|
subcld |
⊢ ( 𝜑 → ( 𝐷 − ( ( 𝐶 · 𝐴 ) / 4 ) ) ∈ ℂ ) |
| 36 |
13 2
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · 𝐵 ) ∈ ℂ ) |
| 37 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 38 |
|
6nn |
⊢ 6 ∈ ℕ |
| 39 |
37 38
|
decnncl |
⊢ ; 1 6 ∈ ℕ |
| 40 |
39
|
nncni |
⊢ ; 1 6 ∈ ℂ |
| 41 |
40
|
a1i |
⊢ ( 𝜑 → ; 1 6 ∈ ℂ ) |
| 42 |
39
|
nnne0i |
⊢ ; 1 6 ≠ 0 |
| 43 |
42
|
a1i |
⊢ ( 𝜑 → ; 1 6 ≠ 0 ) |
| 44 |
36 41 43
|
divcld |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) ∈ ℂ ) |
| 45 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 46 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
| 47 |
45 46
|
deccl |
⊢ ; 2 5 ∈ ℕ0 |
| 48 |
47 38
|
decnncl |
⊢ ; ; 2 5 6 ∈ ℕ |
| 49 |
48
|
nncni |
⊢ ; ; 2 5 6 ∈ ℂ |
| 50 |
48
|
nnne0i |
⊢ ; ; 2 5 6 ≠ 0 |
| 51 |
8 49 50
|
divcli |
⊢ ( 3 / ; ; 2 5 6 ) ∈ ℂ |
| 52 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
| 53 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 4 ∈ ℕ0 ) → ( 𝐴 ↑ 4 ) ∈ ℂ ) |
| 54 |
1 52 53
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 ↑ 4 ) ∈ ℂ ) |
| 55 |
|
mulcl |
⊢ ( ( ( 3 / ; ; 2 5 6 ) ∈ ℂ ∧ ( 𝐴 ↑ 4 ) ∈ ℂ ) → ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ∈ ℂ ) |
| 56 |
51 54 55
|
sylancr |
⊢ ( 𝜑 → ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ∈ ℂ ) |
| 57 |
44 56
|
subcld |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) − ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) ∈ ℂ ) |
| 58 |
35 57
|
addcld |
⊢ ( 𝜑 → ( ( 𝐷 − ( ( 𝐶 · 𝐴 ) / 4 ) ) + ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) / ; 1 6 ) − ( ( 3 / ; ; 2 5 6 ) · ( 𝐴 ↑ 4 ) ) ) ) ∈ ℂ ) |
| 59 |
7 58
|
eqeltrd |
⊢ ( 𝜑 → 𝑅 ∈ ℂ ) |
| 60 |
17 28 59
|
3jca |
⊢ ( 𝜑 → ( 𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ ) ) |