| Step | Hyp | Ref | Expression | 
						
							| 1 |  | quart.a | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | quart.b | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | quart.c | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 4 |  | quart.d | ⊢ ( 𝜑  →  𝐷  ∈  ℂ ) | 
						
							| 5 |  | quart.x | ⊢ ( 𝜑  →  𝑋  ∈  ℂ ) | 
						
							| 6 |  | quart.e | ⊢ ( 𝜑  →  𝐸  =  - ( 𝐴  /  4 ) ) | 
						
							| 7 |  | quart.p | ⊢ ( 𝜑  →  𝑃  =  ( 𝐵  −  ( ( 3  /  8 )  ·  ( 𝐴 ↑ 2 ) ) ) ) | 
						
							| 8 |  | quart.q | ⊢ ( 𝜑  →  𝑄  =  ( ( 𝐶  −  ( ( 𝐴  ·  𝐵 )  /  2 ) )  +  ( ( 𝐴 ↑ 3 )  /  8 ) ) ) | 
						
							| 9 |  | quart.r | ⊢ ( 𝜑  →  𝑅  =  ( ( 𝐷  −  ( ( 𝐶  ·  𝐴 )  /  4 ) )  +  ( ( ( ( 𝐴 ↑ 2 )  ·  𝐵 )  /  ; 1 6 )  −  ( ( 3  /  ; ; 2 5 6 )  ·  ( 𝐴 ↑ 4 ) ) ) ) ) | 
						
							| 10 |  | quart.u | ⊢ ( 𝜑  →  𝑈  =  ( ( 𝑃 ↑ 2 )  +  ( ; 1 2  ·  𝑅 ) ) ) | 
						
							| 11 |  | quart.v | ⊢ ( 𝜑  →  𝑉  =  ( ( - ( 2  ·  ( 𝑃 ↑ 3 ) )  −  ( ; 2 7  ·  ( 𝑄 ↑ 2 ) ) )  +  ( ; 7 2  ·  ( 𝑃  ·  𝑅 ) ) ) ) | 
						
							| 12 |  | quart.w | ⊢ ( 𝜑  →  𝑊  =  ( √ ‘ ( ( 𝑉 ↑ 2 )  −  ( 4  ·  ( 𝑈 ↑ 3 ) ) ) ) ) | 
						
							| 13 |  | quart.s | ⊢ ( 𝜑  →  𝑆  =  ( ( √ ‘ 𝑀 )  /  2 ) ) | 
						
							| 14 |  | quart.m | ⊢ ( 𝜑  →  𝑀  =  - ( ( ( ( 2  ·  𝑃 )  +  𝑇 )  +  ( 𝑈  /  𝑇 ) )  /  3 ) ) | 
						
							| 15 |  | quart.t | ⊢ ( 𝜑  →  𝑇  =  ( ( ( 𝑉  +  𝑊 )  /  2 ) ↑𝑐 ( 1  /  3 ) ) ) | 
						
							| 16 |  | quart.t0 | ⊢ ( 𝜑  →  𝑇  ≠  0 ) | 
						
							| 17 |  | quart.m0 | ⊢ ( 𝜑  →  𝑀  ≠  0 ) | 
						
							| 18 |  | quart.i | ⊢ ( 𝜑  →  𝐼  =  ( √ ‘ ( ( - ( 𝑆 ↑ 2 )  −  ( 𝑃  /  2 ) )  +  ( ( 𝑄  /  4 )  /  𝑆 ) ) ) ) | 
						
							| 19 |  | quart.j | ⊢ ( 𝜑  →  𝐽  =  ( √ ‘ ( ( - ( 𝑆 ↑ 2 )  −  ( 𝑃  /  2 ) )  −  ( ( 𝑄  /  4 )  /  𝑆 ) ) ) ) | 
						
							| 20 | 6 | oveq2d | ⊢ ( 𝜑  →  ( 𝑋  −  𝐸 )  =  ( 𝑋  −  - ( 𝐴  /  4 ) ) ) | 
						
							| 21 |  | 4cn | ⊢ 4  ∈  ℂ | 
						
							| 22 | 21 | a1i | ⊢ ( 𝜑  →  4  ∈  ℂ ) | 
						
							| 23 |  | 4ne0 | ⊢ 4  ≠  0 | 
						
							| 24 | 23 | a1i | ⊢ ( 𝜑  →  4  ≠  0 ) | 
						
							| 25 | 1 22 24 | divcld | ⊢ ( 𝜑  →  ( 𝐴  /  4 )  ∈  ℂ ) | 
						
							| 26 | 5 25 | subnegd | ⊢ ( 𝜑  →  ( 𝑋  −  - ( 𝐴  /  4 ) )  =  ( 𝑋  +  ( 𝐴  /  4 ) ) ) | 
						
							| 27 | 20 26 | eqtrd | ⊢ ( 𝜑  →  ( 𝑋  −  𝐸 )  =  ( 𝑋  +  ( 𝐴  /  4 ) ) ) | 
						
							| 28 | 1 2 3 4 7 8 9 5 27 | quart1 | ⊢ ( 𝜑  →  ( ( ( 𝑋 ↑ 4 )  +  ( 𝐴  ·  ( 𝑋 ↑ 3 ) ) )  +  ( ( 𝐵  ·  ( 𝑋 ↑ 2 ) )  +  ( ( 𝐶  ·  𝑋 )  +  𝐷 ) ) )  =  ( ( ( ( 𝑋  −  𝐸 ) ↑ 4 )  +  ( 𝑃  ·  ( ( 𝑋  −  𝐸 ) ↑ 2 ) ) )  +  ( ( 𝑄  ·  ( 𝑋  −  𝐸 ) )  +  𝑅 ) ) ) | 
						
							| 29 | 28 | eqeq1d | ⊢ ( 𝜑  →  ( ( ( ( 𝑋 ↑ 4 )  +  ( 𝐴  ·  ( 𝑋 ↑ 3 ) ) )  +  ( ( 𝐵  ·  ( 𝑋 ↑ 2 ) )  +  ( ( 𝐶  ·  𝑋 )  +  𝐷 ) ) )  =  0  ↔  ( ( ( ( 𝑋  −  𝐸 ) ↑ 4 )  +  ( 𝑃  ·  ( ( 𝑋  −  𝐸 ) ↑ 2 ) ) )  +  ( ( 𝑄  ·  ( 𝑋  −  𝐸 ) )  +  𝑅 ) )  =  0 ) ) | 
						
							| 30 | 1 2 3 4 7 8 9 | quart1cl | ⊢ ( 𝜑  →  ( 𝑃  ∈  ℂ  ∧  𝑄  ∈  ℂ  ∧  𝑅  ∈  ℂ ) ) | 
						
							| 31 | 30 | simp1d | ⊢ ( 𝜑  →  𝑃  ∈  ℂ ) | 
						
							| 32 | 30 | simp2d | ⊢ ( 𝜑  →  𝑄  ∈  ℂ ) | 
						
							| 33 | 25 | negcld | ⊢ ( 𝜑  →  - ( 𝐴  /  4 )  ∈  ℂ ) | 
						
							| 34 | 6 33 | eqeltrd | ⊢ ( 𝜑  →  𝐸  ∈  ℂ ) | 
						
							| 35 | 5 34 | subcld | ⊢ ( 𝜑  →  ( 𝑋  −  𝐸 )  ∈  ℂ ) | 
						
							| 36 | 1 2 3 4 1 6 7 8 9 10 11 12 13 14 15 16 | quartlem3 | ⊢ ( 𝜑  →  ( 𝑆  ∈  ℂ  ∧  𝑀  ∈  ℂ  ∧  𝑇  ∈  ℂ ) ) | 
						
							| 37 | 36 | simp1d | ⊢ ( 𝜑  →  𝑆  ∈  ℂ ) | 
						
							| 38 | 13 | oveq2d | ⊢ ( 𝜑  →  ( 2  ·  𝑆 )  =  ( 2  ·  ( ( √ ‘ 𝑀 )  /  2 ) ) ) | 
						
							| 39 | 36 | simp2d | ⊢ ( 𝜑  →  𝑀  ∈  ℂ ) | 
						
							| 40 | 39 | sqrtcld | ⊢ ( 𝜑  →  ( √ ‘ 𝑀 )  ∈  ℂ ) | 
						
							| 41 |  | 2cnd | ⊢ ( 𝜑  →  2  ∈  ℂ ) | 
						
							| 42 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 43 | 42 | a1i | ⊢ ( 𝜑  →  2  ≠  0 ) | 
						
							| 44 | 40 41 43 | divcan2d | ⊢ ( 𝜑  →  ( 2  ·  ( ( √ ‘ 𝑀 )  /  2 ) )  =  ( √ ‘ 𝑀 ) ) | 
						
							| 45 | 38 44 | eqtrd | ⊢ ( 𝜑  →  ( 2  ·  𝑆 )  =  ( √ ‘ 𝑀 ) ) | 
						
							| 46 | 45 | oveq1d | ⊢ ( 𝜑  →  ( ( 2  ·  𝑆 ) ↑ 2 )  =  ( ( √ ‘ 𝑀 ) ↑ 2 ) ) | 
						
							| 47 | 39 | sqsqrtd | ⊢ ( 𝜑  →  ( ( √ ‘ 𝑀 ) ↑ 2 )  =  𝑀 ) | 
						
							| 48 | 46 47 | eqtr2d | ⊢ ( 𝜑  →  𝑀  =  ( ( 2  ·  𝑆 ) ↑ 2 ) ) | 
						
							| 49 | 1 2 3 4 1 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | quartlem4 | ⊢ ( 𝜑  →  ( 𝑆  ≠  0  ∧  𝐼  ∈  ℂ  ∧  𝐽  ∈  ℂ ) ) | 
						
							| 50 | 49 | simp2d | ⊢ ( 𝜑  →  𝐼  ∈  ℂ ) | 
						
							| 51 | 18 | oveq1d | ⊢ ( 𝜑  →  ( 𝐼 ↑ 2 )  =  ( ( √ ‘ ( ( - ( 𝑆 ↑ 2 )  −  ( 𝑃  /  2 ) )  +  ( ( 𝑄  /  4 )  /  𝑆 ) ) ) ↑ 2 ) ) | 
						
							| 52 | 37 | sqcld | ⊢ ( 𝜑  →  ( 𝑆 ↑ 2 )  ∈  ℂ ) | 
						
							| 53 | 52 | negcld | ⊢ ( 𝜑  →  - ( 𝑆 ↑ 2 )  ∈  ℂ ) | 
						
							| 54 | 31 | halfcld | ⊢ ( 𝜑  →  ( 𝑃  /  2 )  ∈  ℂ ) | 
						
							| 55 | 53 54 | subcld | ⊢ ( 𝜑  →  ( - ( 𝑆 ↑ 2 )  −  ( 𝑃  /  2 ) )  ∈  ℂ ) | 
						
							| 56 | 32 22 24 | divcld | ⊢ ( 𝜑  →  ( 𝑄  /  4 )  ∈  ℂ ) | 
						
							| 57 | 49 | simp1d | ⊢ ( 𝜑  →  𝑆  ≠  0 ) | 
						
							| 58 | 56 37 57 | divcld | ⊢ ( 𝜑  →  ( ( 𝑄  /  4 )  /  𝑆 )  ∈  ℂ ) | 
						
							| 59 | 55 58 | addcld | ⊢ ( 𝜑  →  ( ( - ( 𝑆 ↑ 2 )  −  ( 𝑃  /  2 ) )  +  ( ( 𝑄  /  4 )  /  𝑆 ) )  ∈  ℂ ) | 
						
							| 60 | 59 | sqsqrtd | ⊢ ( 𝜑  →  ( ( √ ‘ ( ( - ( 𝑆 ↑ 2 )  −  ( 𝑃  /  2 ) )  +  ( ( 𝑄  /  4 )  /  𝑆 ) ) ) ↑ 2 )  =  ( ( - ( 𝑆 ↑ 2 )  −  ( 𝑃  /  2 ) )  +  ( ( 𝑄  /  4 )  /  𝑆 ) ) ) | 
						
							| 61 | 51 60 | eqtrd | ⊢ ( 𝜑  →  ( 𝐼 ↑ 2 )  =  ( ( - ( 𝑆 ↑ 2 )  −  ( 𝑃  /  2 ) )  +  ( ( 𝑄  /  4 )  /  𝑆 ) ) ) | 
						
							| 62 | 30 | simp3d | ⊢ ( 𝜑  →  𝑅  ∈  ℂ ) | 
						
							| 63 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 64 |  | 3z | ⊢ 3  ∈  ℤ | 
						
							| 65 |  | 1exp | ⊢ ( 3  ∈  ℤ  →  ( 1 ↑ 3 )  =  1 ) | 
						
							| 66 | 64 65 | mp1i | ⊢ ( 𝜑  →  ( 1 ↑ 3 )  =  1 ) | 
						
							| 67 | 36 | simp3d | ⊢ ( 𝜑  →  𝑇  ∈  ℂ ) | 
						
							| 68 | 67 | mullidd | ⊢ ( 𝜑  →  ( 1  ·  𝑇 )  =  𝑇 ) | 
						
							| 69 | 68 | oveq2d | ⊢ ( 𝜑  →  ( ( 2  ·  𝑃 )  +  ( 1  ·  𝑇 ) )  =  ( ( 2  ·  𝑃 )  +  𝑇 ) ) | 
						
							| 70 | 68 | oveq2d | ⊢ ( 𝜑  →  ( 𝑈  /  ( 1  ·  𝑇 ) )  =  ( 𝑈  /  𝑇 ) ) | 
						
							| 71 | 69 70 | oveq12d | ⊢ ( 𝜑  →  ( ( ( 2  ·  𝑃 )  +  ( 1  ·  𝑇 ) )  +  ( 𝑈  /  ( 1  ·  𝑇 ) ) )  =  ( ( ( 2  ·  𝑃 )  +  𝑇 )  +  ( 𝑈  /  𝑇 ) ) ) | 
						
							| 72 | 71 | oveq1d | ⊢ ( 𝜑  →  ( ( ( ( 2  ·  𝑃 )  +  ( 1  ·  𝑇 ) )  +  ( 𝑈  /  ( 1  ·  𝑇 ) ) )  /  3 )  =  ( ( ( ( 2  ·  𝑃 )  +  𝑇 )  +  ( 𝑈  /  𝑇 ) )  /  3 ) ) | 
						
							| 73 | 72 | negeqd | ⊢ ( 𝜑  →  - ( ( ( ( 2  ·  𝑃 )  +  ( 1  ·  𝑇 ) )  +  ( 𝑈  /  ( 1  ·  𝑇 ) ) )  /  3 )  =  - ( ( ( ( 2  ·  𝑃 )  +  𝑇 )  +  ( 𝑈  /  𝑇 ) )  /  3 ) ) | 
						
							| 74 | 14 73 | eqtr4d | ⊢ ( 𝜑  →  𝑀  =  - ( ( ( ( 2  ·  𝑃 )  +  ( 1  ·  𝑇 ) )  +  ( 𝑈  /  ( 1  ·  𝑇 ) ) )  /  3 ) ) | 
						
							| 75 |  | oveq1 | ⊢ ( 𝑥  =  1  →  ( 𝑥 ↑ 3 )  =  ( 1 ↑ 3 ) ) | 
						
							| 76 | 75 | eqeq1d | ⊢ ( 𝑥  =  1  →  ( ( 𝑥 ↑ 3 )  =  1  ↔  ( 1 ↑ 3 )  =  1 ) ) | 
						
							| 77 |  | oveq1 | ⊢ ( 𝑥  =  1  →  ( 𝑥  ·  𝑇 )  =  ( 1  ·  𝑇 ) ) | 
						
							| 78 | 77 | oveq2d | ⊢ ( 𝑥  =  1  →  ( ( 2  ·  𝑃 )  +  ( 𝑥  ·  𝑇 ) )  =  ( ( 2  ·  𝑃 )  +  ( 1  ·  𝑇 ) ) ) | 
						
							| 79 | 77 | oveq2d | ⊢ ( 𝑥  =  1  →  ( 𝑈  /  ( 𝑥  ·  𝑇 ) )  =  ( 𝑈  /  ( 1  ·  𝑇 ) ) ) | 
						
							| 80 | 78 79 | oveq12d | ⊢ ( 𝑥  =  1  →  ( ( ( 2  ·  𝑃 )  +  ( 𝑥  ·  𝑇 ) )  +  ( 𝑈  /  ( 𝑥  ·  𝑇 ) ) )  =  ( ( ( 2  ·  𝑃 )  +  ( 1  ·  𝑇 ) )  +  ( 𝑈  /  ( 1  ·  𝑇 ) ) ) ) | 
						
							| 81 | 80 | oveq1d | ⊢ ( 𝑥  =  1  →  ( ( ( ( 2  ·  𝑃 )  +  ( 𝑥  ·  𝑇 ) )  +  ( 𝑈  /  ( 𝑥  ·  𝑇 ) ) )  /  3 )  =  ( ( ( ( 2  ·  𝑃 )  +  ( 1  ·  𝑇 ) )  +  ( 𝑈  /  ( 1  ·  𝑇 ) ) )  /  3 ) ) | 
						
							| 82 | 81 | negeqd | ⊢ ( 𝑥  =  1  →  - ( ( ( ( 2  ·  𝑃 )  +  ( 𝑥  ·  𝑇 ) )  +  ( 𝑈  /  ( 𝑥  ·  𝑇 ) ) )  /  3 )  =  - ( ( ( ( 2  ·  𝑃 )  +  ( 1  ·  𝑇 ) )  +  ( 𝑈  /  ( 1  ·  𝑇 ) ) )  /  3 ) ) | 
						
							| 83 | 82 | eqeq2d | ⊢ ( 𝑥  =  1  →  ( 𝑀  =  - ( ( ( ( 2  ·  𝑃 )  +  ( 𝑥  ·  𝑇 ) )  +  ( 𝑈  /  ( 𝑥  ·  𝑇 ) ) )  /  3 )  ↔  𝑀  =  - ( ( ( ( 2  ·  𝑃 )  +  ( 1  ·  𝑇 ) )  +  ( 𝑈  /  ( 1  ·  𝑇 ) ) )  /  3 ) ) ) | 
						
							| 84 | 76 83 | anbi12d | ⊢ ( 𝑥  =  1  →  ( ( ( 𝑥 ↑ 3 )  =  1  ∧  𝑀  =  - ( ( ( ( 2  ·  𝑃 )  +  ( 𝑥  ·  𝑇 ) )  +  ( 𝑈  /  ( 𝑥  ·  𝑇 ) ) )  /  3 ) )  ↔  ( ( 1 ↑ 3 )  =  1  ∧  𝑀  =  - ( ( ( ( 2  ·  𝑃 )  +  ( 1  ·  𝑇 ) )  +  ( 𝑈  /  ( 1  ·  𝑇 ) ) )  /  3 ) ) ) ) | 
						
							| 85 | 84 | rspcev | ⊢ ( ( 1  ∈  ℂ  ∧  ( ( 1 ↑ 3 )  =  1  ∧  𝑀  =  - ( ( ( ( 2  ·  𝑃 )  +  ( 1  ·  𝑇 ) )  +  ( 𝑈  /  ( 1  ·  𝑇 ) ) )  /  3 ) ) )  →  ∃ 𝑥  ∈  ℂ ( ( 𝑥 ↑ 3 )  =  1  ∧  𝑀  =  - ( ( ( ( 2  ·  𝑃 )  +  ( 𝑥  ·  𝑇 ) )  +  ( 𝑈  /  ( 𝑥  ·  𝑇 ) ) )  /  3 ) ) ) | 
						
							| 86 | 63 66 74 85 | syl12anc | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℂ ( ( 𝑥 ↑ 3 )  =  1  ∧  𝑀  =  - ( ( ( ( 2  ·  𝑃 )  +  ( 𝑥  ·  𝑇 ) )  +  ( 𝑈  /  ( 𝑥  ·  𝑇 ) ) )  /  3 ) ) ) | 
						
							| 87 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 88 |  | mulcl | ⊢ ( ( 2  ∈  ℂ  ∧  𝑃  ∈  ℂ )  →  ( 2  ·  𝑃 )  ∈  ℂ ) | 
						
							| 89 | 87 31 88 | sylancr | ⊢ ( 𝜑  →  ( 2  ·  𝑃 )  ∈  ℂ ) | 
						
							| 90 | 31 | sqcld | ⊢ ( 𝜑  →  ( 𝑃 ↑ 2 )  ∈  ℂ ) | 
						
							| 91 |  | mulcl | ⊢ ( ( 4  ∈  ℂ  ∧  𝑅  ∈  ℂ )  →  ( 4  ·  𝑅 )  ∈  ℂ ) | 
						
							| 92 | 21 62 91 | sylancr | ⊢ ( 𝜑  →  ( 4  ·  𝑅 )  ∈  ℂ ) | 
						
							| 93 | 90 92 | subcld | ⊢ ( 𝜑  →  ( ( 𝑃 ↑ 2 )  −  ( 4  ·  𝑅 ) )  ∈  ℂ ) | 
						
							| 94 | 32 | sqcld | ⊢ ( 𝜑  →  ( 𝑄 ↑ 2 )  ∈  ℂ ) | 
						
							| 95 | 94 | negcld | ⊢ ( 𝜑  →  - ( 𝑄 ↑ 2 )  ∈  ℂ ) | 
						
							| 96 | 15 | oveq1d | ⊢ ( 𝜑  →  ( 𝑇 ↑ 3 )  =  ( ( ( ( 𝑉  +  𝑊 )  /  2 ) ↑𝑐 ( 1  /  3 ) ) ↑ 3 ) ) | 
						
							| 97 | 1 2 3 4 1 6 7 8 9 10 11 12 | quartlem2 | ⊢ ( 𝜑  →  ( 𝑈  ∈  ℂ  ∧  𝑉  ∈  ℂ  ∧  𝑊  ∈  ℂ ) ) | 
						
							| 98 | 97 | simp2d | ⊢ ( 𝜑  →  𝑉  ∈  ℂ ) | 
						
							| 99 | 97 | simp3d | ⊢ ( 𝜑  →  𝑊  ∈  ℂ ) | 
						
							| 100 | 98 99 | addcld | ⊢ ( 𝜑  →  ( 𝑉  +  𝑊 )  ∈  ℂ ) | 
						
							| 101 | 100 | halfcld | ⊢ ( 𝜑  →  ( ( 𝑉  +  𝑊 )  /  2 )  ∈  ℂ ) | 
						
							| 102 |  | 3nn | ⊢ 3  ∈  ℕ | 
						
							| 103 |  | cxproot | ⊢ ( ( ( ( 𝑉  +  𝑊 )  /  2 )  ∈  ℂ  ∧  3  ∈  ℕ )  →  ( ( ( ( 𝑉  +  𝑊 )  /  2 ) ↑𝑐 ( 1  /  3 ) ) ↑ 3 )  =  ( ( 𝑉  +  𝑊 )  /  2 ) ) | 
						
							| 104 | 101 102 103 | sylancl | ⊢ ( 𝜑  →  ( ( ( ( 𝑉  +  𝑊 )  /  2 ) ↑𝑐 ( 1  /  3 ) ) ↑ 3 )  =  ( ( 𝑉  +  𝑊 )  /  2 ) ) | 
						
							| 105 | 96 104 | eqtrd | ⊢ ( 𝜑  →  ( 𝑇 ↑ 3 )  =  ( ( 𝑉  +  𝑊 )  /  2 ) ) | 
						
							| 106 | 12 | oveq1d | ⊢ ( 𝜑  →  ( 𝑊 ↑ 2 )  =  ( ( √ ‘ ( ( 𝑉 ↑ 2 )  −  ( 4  ·  ( 𝑈 ↑ 3 ) ) ) ) ↑ 2 ) ) | 
						
							| 107 | 98 | sqcld | ⊢ ( 𝜑  →  ( 𝑉 ↑ 2 )  ∈  ℂ ) | 
						
							| 108 | 97 | simp1d | ⊢ ( 𝜑  →  𝑈  ∈  ℂ ) | 
						
							| 109 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 110 |  | expcl | ⊢ ( ( 𝑈  ∈  ℂ  ∧  3  ∈  ℕ0 )  →  ( 𝑈 ↑ 3 )  ∈  ℂ ) | 
						
							| 111 | 108 109 110 | sylancl | ⊢ ( 𝜑  →  ( 𝑈 ↑ 3 )  ∈  ℂ ) | 
						
							| 112 |  | mulcl | ⊢ ( ( 4  ∈  ℂ  ∧  ( 𝑈 ↑ 3 )  ∈  ℂ )  →  ( 4  ·  ( 𝑈 ↑ 3 ) )  ∈  ℂ ) | 
						
							| 113 | 21 111 112 | sylancr | ⊢ ( 𝜑  →  ( 4  ·  ( 𝑈 ↑ 3 ) )  ∈  ℂ ) | 
						
							| 114 | 107 113 | subcld | ⊢ ( 𝜑  →  ( ( 𝑉 ↑ 2 )  −  ( 4  ·  ( 𝑈 ↑ 3 ) ) )  ∈  ℂ ) | 
						
							| 115 | 114 | sqsqrtd | ⊢ ( 𝜑  →  ( ( √ ‘ ( ( 𝑉 ↑ 2 )  −  ( 4  ·  ( 𝑈 ↑ 3 ) ) ) ) ↑ 2 )  =  ( ( 𝑉 ↑ 2 )  −  ( 4  ·  ( 𝑈 ↑ 3 ) ) ) ) | 
						
							| 116 | 106 115 | eqtrd | ⊢ ( 𝜑  →  ( 𝑊 ↑ 2 )  =  ( ( 𝑉 ↑ 2 )  −  ( 4  ·  ( 𝑈 ↑ 3 ) ) ) ) | 
						
							| 117 | 31 32 62 10 11 | quartlem1 | ⊢ ( 𝜑  →  ( 𝑈  =  ( ( ( 2  ·  𝑃 ) ↑ 2 )  −  ( 3  ·  ( ( 𝑃 ↑ 2 )  −  ( 4  ·  𝑅 ) ) ) )  ∧  𝑉  =  ( ( ( 2  ·  ( ( 2  ·  𝑃 ) ↑ 3 ) )  −  ( 9  ·  ( ( 2  ·  𝑃 )  ·  ( ( 𝑃 ↑ 2 )  −  ( 4  ·  𝑅 ) ) ) ) )  +  ( ; 2 7  ·  - ( 𝑄 ↑ 2 ) ) ) ) ) | 
						
							| 118 | 117 | simpld | ⊢ ( 𝜑  →  𝑈  =  ( ( ( 2  ·  𝑃 ) ↑ 2 )  −  ( 3  ·  ( ( 𝑃 ↑ 2 )  −  ( 4  ·  𝑅 ) ) ) ) ) | 
						
							| 119 | 117 | simprd | ⊢ ( 𝜑  →  𝑉  =  ( ( ( 2  ·  ( ( 2  ·  𝑃 ) ↑ 3 ) )  −  ( 9  ·  ( ( 2  ·  𝑃 )  ·  ( ( 𝑃 ↑ 2 )  −  ( 4  ·  𝑅 ) ) ) ) )  +  ( ; 2 7  ·  - ( 𝑄 ↑ 2 ) ) ) ) | 
						
							| 120 | 89 93 95 39 67 105 99 116 118 119 16 | mcubic | ⊢ ( 𝜑  →  ( ( ( ( 𝑀 ↑ 3 )  +  ( ( 2  ·  𝑃 )  ·  ( 𝑀 ↑ 2 ) ) )  +  ( ( ( ( 𝑃 ↑ 2 )  −  ( 4  ·  𝑅 ) )  ·  𝑀 )  +  - ( 𝑄 ↑ 2 ) ) )  =  0  ↔  ∃ 𝑥  ∈  ℂ ( ( 𝑥 ↑ 3 )  =  1  ∧  𝑀  =  - ( ( ( ( 2  ·  𝑃 )  +  ( 𝑥  ·  𝑇 ) )  +  ( 𝑈  /  ( 𝑥  ·  𝑇 ) ) )  /  3 ) ) ) ) | 
						
							| 121 | 86 120 | mpbird | ⊢ ( 𝜑  →  ( ( ( 𝑀 ↑ 3 )  +  ( ( 2  ·  𝑃 )  ·  ( 𝑀 ↑ 2 ) ) )  +  ( ( ( ( 𝑃 ↑ 2 )  −  ( 4  ·  𝑅 ) )  ·  𝑀 )  +  - ( 𝑄 ↑ 2 ) ) )  =  0 ) | 
						
							| 122 | 49 | simp3d | ⊢ ( 𝜑  →  𝐽  ∈  ℂ ) | 
						
							| 123 | 19 | oveq1d | ⊢ ( 𝜑  →  ( 𝐽 ↑ 2 )  =  ( ( √ ‘ ( ( - ( 𝑆 ↑ 2 )  −  ( 𝑃  /  2 ) )  −  ( ( 𝑄  /  4 )  /  𝑆 ) ) ) ↑ 2 ) ) | 
						
							| 124 | 55 58 | subcld | ⊢ ( 𝜑  →  ( ( - ( 𝑆 ↑ 2 )  −  ( 𝑃  /  2 ) )  −  ( ( 𝑄  /  4 )  /  𝑆 ) )  ∈  ℂ ) | 
						
							| 125 | 124 | sqsqrtd | ⊢ ( 𝜑  →  ( ( √ ‘ ( ( - ( 𝑆 ↑ 2 )  −  ( 𝑃  /  2 ) )  −  ( ( 𝑄  /  4 )  /  𝑆 ) ) ) ↑ 2 )  =  ( ( - ( 𝑆 ↑ 2 )  −  ( 𝑃  /  2 ) )  −  ( ( 𝑄  /  4 )  /  𝑆 ) ) ) | 
						
							| 126 | 123 125 | eqtrd | ⊢ ( 𝜑  →  ( 𝐽 ↑ 2 )  =  ( ( - ( 𝑆 ↑ 2 )  −  ( 𝑃  /  2 ) )  −  ( ( 𝑄  /  4 )  /  𝑆 ) ) ) | 
						
							| 127 | 31 32 35 37 48 17 50 61 62 121 122 126 | dquart | ⊢ ( 𝜑  →  ( ( ( ( ( 𝑋  −  𝐸 ) ↑ 4 )  +  ( 𝑃  ·  ( ( 𝑋  −  𝐸 ) ↑ 2 ) ) )  +  ( ( 𝑄  ·  ( 𝑋  −  𝐸 ) )  +  𝑅 ) )  =  0  ↔  ( ( ( 𝑋  −  𝐸 )  =  ( - 𝑆  +  𝐼 )  ∨  ( 𝑋  −  𝐸 )  =  ( - 𝑆  −  𝐼 ) )  ∨  ( ( 𝑋  −  𝐸 )  =  ( 𝑆  +  𝐽 )  ∨  ( 𝑋  −  𝐸 )  =  ( 𝑆  −  𝐽 ) ) ) ) ) | 
						
							| 128 | 37 | negcld | ⊢ ( 𝜑  →  - 𝑆  ∈  ℂ ) | 
						
							| 129 | 128 50 | addcld | ⊢ ( 𝜑  →  ( - 𝑆  +  𝐼 )  ∈  ℂ ) | 
						
							| 130 | 5 34 129 | subaddd | ⊢ ( 𝜑  →  ( ( 𝑋  −  𝐸 )  =  ( - 𝑆  +  𝐼 )  ↔  ( 𝐸  +  ( - 𝑆  +  𝐼 ) )  =  𝑋 ) ) | 
						
							| 131 | 34 37 | negsubd | ⊢ ( 𝜑  →  ( 𝐸  +  - 𝑆 )  =  ( 𝐸  −  𝑆 ) ) | 
						
							| 132 | 131 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐸  +  - 𝑆 )  +  𝐼 )  =  ( ( 𝐸  −  𝑆 )  +  𝐼 ) ) | 
						
							| 133 | 34 128 50 | addassd | ⊢ ( 𝜑  →  ( ( 𝐸  +  - 𝑆 )  +  𝐼 )  =  ( 𝐸  +  ( - 𝑆  +  𝐼 ) ) ) | 
						
							| 134 | 132 133 | eqtr3d | ⊢ ( 𝜑  →  ( ( 𝐸  −  𝑆 )  +  𝐼 )  =  ( 𝐸  +  ( - 𝑆  +  𝐼 ) ) ) | 
						
							| 135 | 134 | eqeq1d | ⊢ ( 𝜑  →  ( ( ( 𝐸  −  𝑆 )  +  𝐼 )  =  𝑋  ↔  ( 𝐸  +  ( - 𝑆  +  𝐼 ) )  =  𝑋 ) ) | 
						
							| 136 | 130 135 | bitr4d | ⊢ ( 𝜑  →  ( ( 𝑋  −  𝐸 )  =  ( - 𝑆  +  𝐼 )  ↔  ( ( 𝐸  −  𝑆 )  +  𝐼 )  =  𝑋 ) ) | 
						
							| 137 |  | eqcom | ⊢ ( ( ( 𝐸  −  𝑆 )  +  𝐼 )  =  𝑋  ↔  𝑋  =  ( ( 𝐸  −  𝑆 )  +  𝐼 ) ) | 
						
							| 138 | 136 137 | bitrdi | ⊢ ( 𝜑  →  ( ( 𝑋  −  𝐸 )  =  ( - 𝑆  +  𝐼 )  ↔  𝑋  =  ( ( 𝐸  −  𝑆 )  +  𝐼 ) ) ) | 
						
							| 139 | 128 50 | subcld | ⊢ ( 𝜑  →  ( - 𝑆  −  𝐼 )  ∈  ℂ ) | 
						
							| 140 | 5 34 139 | subaddd | ⊢ ( 𝜑  →  ( ( 𝑋  −  𝐸 )  =  ( - 𝑆  −  𝐼 )  ↔  ( 𝐸  +  ( - 𝑆  −  𝐼 ) )  =  𝑋 ) ) | 
						
							| 141 | 131 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐸  +  - 𝑆 )  −  𝐼 )  =  ( ( 𝐸  −  𝑆 )  −  𝐼 ) ) | 
						
							| 142 | 34 128 50 | addsubassd | ⊢ ( 𝜑  →  ( ( 𝐸  +  - 𝑆 )  −  𝐼 )  =  ( 𝐸  +  ( - 𝑆  −  𝐼 ) ) ) | 
						
							| 143 | 141 142 | eqtr3d | ⊢ ( 𝜑  →  ( ( 𝐸  −  𝑆 )  −  𝐼 )  =  ( 𝐸  +  ( - 𝑆  −  𝐼 ) ) ) | 
						
							| 144 | 143 | eqeq1d | ⊢ ( 𝜑  →  ( ( ( 𝐸  −  𝑆 )  −  𝐼 )  =  𝑋  ↔  ( 𝐸  +  ( - 𝑆  −  𝐼 ) )  =  𝑋 ) ) | 
						
							| 145 | 140 144 | bitr4d | ⊢ ( 𝜑  →  ( ( 𝑋  −  𝐸 )  =  ( - 𝑆  −  𝐼 )  ↔  ( ( 𝐸  −  𝑆 )  −  𝐼 )  =  𝑋 ) ) | 
						
							| 146 |  | eqcom | ⊢ ( ( ( 𝐸  −  𝑆 )  −  𝐼 )  =  𝑋  ↔  𝑋  =  ( ( 𝐸  −  𝑆 )  −  𝐼 ) ) | 
						
							| 147 | 145 146 | bitrdi | ⊢ ( 𝜑  →  ( ( 𝑋  −  𝐸 )  =  ( - 𝑆  −  𝐼 )  ↔  𝑋  =  ( ( 𝐸  −  𝑆 )  −  𝐼 ) ) ) | 
						
							| 148 | 138 147 | orbi12d | ⊢ ( 𝜑  →  ( ( ( 𝑋  −  𝐸 )  =  ( - 𝑆  +  𝐼 )  ∨  ( 𝑋  −  𝐸 )  =  ( - 𝑆  −  𝐼 ) )  ↔  ( 𝑋  =  ( ( 𝐸  −  𝑆 )  +  𝐼 )  ∨  𝑋  =  ( ( 𝐸  −  𝑆 )  −  𝐼 ) ) ) ) | 
						
							| 149 | 37 122 | addcld | ⊢ ( 𝜑  →  ( 𝑆  +  𝐽 )  ∈  ℂ ) | 
						
							| 150 | 5 34 149 | subaddd | ⊢ ( 𝜑  →  ( ( 𝑋  −  𝐸 )  =  ( 𝑆  +  𝐽 )  ↔  ( 𝐸  +  ( 𝑆  +  𝐽 ) )  =  𝑋 ) ) | 
						
							| 151 | 34 37 122 | addassd | ⊢ ( 𝜑  →  ( ( 𝐸  +  𝑆 )  +  𝐽 )  =  ( 𝐸  +  ( 𝑆  +  𝐽 ) ) ) | 
						
							| 152 | 151 | eqeq1d | ⊢ ( 𝜑  →  ( ( ( 𝐸  +  𝑆 )  +  𝐽 )  =  𝑋  ↔  ( 𝐸  +  ( 𝑆  +  𝐽 ) )  =  𝑋 ) ) | 
						
							| 153 | 150 152 | bitr4d | ⊢ ( 𝜑  →  ( ( 𝑋  −  𝐸 )  =  ( 𝑆  +  𝐽 )  ↔  ( ( 𝐸  +  𝑆 )  +  𝐽 )  =  𝑋 ) ) | 
						
							| 154 |  | eqcom | ⊢ ( ( ( 𝐸  +  𝑆 )  +  𝐽 )  =  𝑋  ↔  𝑋  =  ( ( 𝐸  +  𝑆 )  +  𝐽 ) ) | 
						
							| 155 | 153 154 | bitrdi | ⊢ ( 𝜑  →  ( ( 𝑋  −  𝐸 )  =  ( 𝑆  +  𝐽 )  ↔  𝑋  =  ( ( 𝐸  +  𝑆 )  +  𝐽 ) ) ) | 
						
							| 156 | 37 122 | subcld | ⊢ ( 𝜑  →  ( 𝑆  −  𝐽 )  ∈  ℂ ) | 
						
							| 157 | 5 34 156 | subaddd | ⊢ ( 𝜑  →  ( ( 𝑋  −  𝐸 )  =  ( 𝑆  −  𝐽 )  ↔  ( 𝐸  +  ( 𝑆  −  𝐽 ) )  =  𝑋 ) ) | 
						
							| 158 | 34 37 122 | addsubassd | ⊢ ( 𝜑  →  ( ( 𝐸  +  𝑆 )  −  𝐽 )  =  ( 𝐸  +  ( 𝑆  −  𝐽 ) ) ) | 
						
							| 159 | 158 | eqeq1d | ⊢ ( 𝜑  →  ( ( ( 𝐸  +  𝑆 )  −  𝐽 )  =  𝑋  ↔  ( 𝐸  +  ( 𝑆  −  𝐽 ) )  =  𝑋 ) ) | 
						
							| 160 | 157 159 | bitr4d | ⊢ ( 𝜑  →  ( ( 𝑋  −  𝐸 )  =  ( 𝑆  −  𝐽 )  ↔  ( ( 𝐸  +  𝑆 )  −  𝐽 )  =  𝑋 ) ) | 
						
							| 161 |  | eqcom | ⊢ ( ( ( 𝐸  +  𝑆 )  −  𝐽 )  =  𝑋  ↔  𝑋  =  ( ( 𝐸  +  𝑆 )  −  𝐽 ) ) | 
						
							| 162 | 160 161 | bitrdi | ⊢ ( 𝜑  →  ( ( 𝑋  −  𝐸 )  =  ( 𝑆  −  𝐽 )  ↔  𝑋  =  ( ( 𝐸  +  𝑆 )  −  𝐽 ) ) ) | 
						
							| 163 | 155 162 | orbi12d | ⊢ ( 𝜑  →  ( ( ( 𝑋  −  𝐸 )  =  ( 𝑆  +  𝐽 )  ∨  ( 𝑋  −  𝐸 )  =  ( 𝑆  −  𝐽 ) )  ↔  ( 𝑋  =  ( ( 𝐸  +  𝑆 )  +  𝐽 )  ∨  𝑋  =  ( ( 𝐸  +  𝑆 )  −  𝐽 ) ) ) ) | 
						
							| 164 | 148 163 | orbi12d | ⊢ ( 𝜑  →  ( ( ( ( 𝑋  −  𝐸 )  =  ( - 𝑆  +  𝐼 )  ∨  ( 𝑋  −  𝐸 )  =  ( - 𝑆  −  𝐼 ) )  ∨  ( ( 𝑋  −  𝐸 )  =  ( 𝑆  +  𝐽 )  ∨  ( 𝑋  −  𝐸 )  =  ( 𝑆  −  𝐽 ) ) )  ↔  ( ( 𝑋  =  ( ( 𝐸  −  𝑆 )  +  𝐼 )  ∨  𝑋  =  ( ( 𝐸  −  𝑆 )  −  𝐼 ) )  ∨  ( 𝑋  =  ( ( 𝐸  +  𝑆 )  +  𝐽 )  ∨  𝑋  =  ( ( 𝐸  +  𝑆 )  −  𝐽 ) ) ) ) ) | 
						
							| 165 | 29 127 164 | 3bitrd | ⊢ ( 𝜑  →  ( ( ( ( 𝑋 ↑ 4 )  +  ( 𝐴  ·  ( 𝑋 ↑ 3 ) ) )  +  ( ( 𝐵  ·  ( 𝑋 ↑ 2 ) )  +  ( ( 𝐶  ·  𝑋 )  +  𝐷 ) ) )  =  0  ↔  ( ( 𝑋  =  ( ( 𝐸  −  𝑆 )  +  𝐼 )  ∨  𝑋  =  ( ( 𝐸  −  𝑆 )  −  𝐼 ) )  ∨  ( 𝑋  =  ( ( 𝐸  +  𝑆 )  +  𝐽 )  ∨  𝑋  =  ( ( 𝐸  +  𝑆 )  −  𝐽 ) ) ) ) ) |