| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mcubic.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 2 |
|
mcubic.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 3 |
|
mcubic.d |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 4 |
|
mcubic.x |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 5 |
|
mcubic.t |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
| 6 |
|
mcubic.3 |
⊢ ( 𝜑 → ( 𝑇 ↑ 3 ) = ( ( 𝑁 + 𝐺 ) / 2 ) ) |
| 7 |
|
mcubic.g |
⊢ ( 𝜑 → 𝐺 ∈ ℂ ) |
| 8 |
|
mcubic.2 |
⊢ ( 𝜑 → ( 𝐺 ↑ 2 ) = ( ( 𝑁 ↑ 2 ) − ( 4 · ( 𝑀 ↑ 3 ) ) ) ) |
| 9 |
|
mcubic.m |
⊢ ( 𝜑 → 𝑀 = ( ( 𝐵 ↑ 2 ) − ( 3 · 𝐶 ) ) ) |
| 10 |
|
mcubic.n |
⊢ ( 𝜑 → 𝑁 = ( ( ( 2 · ( 𝐵 ↑ 3 ) ) − ( 9 · ( 𝐵 · 𝐶 ) ) ) + ( ; 2 7 · 𝐷 ) ) ) |
| 11 |
|
mcubic.0 |
⊢ ( 𝜑 → 𝑇 ≠ 0 ) |
| 12 |
1
|
sqcld |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
| 13 |
|
3cn |
⊢ 3 ∈ ℂ |
| 14 |
|
mulcl |
⊢ ( ( 3 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 3 · 𝐶 ) ∈ ℂ ) |
| 15 |
13 2 14
|
sylancr |
⊢ ( 𝜑 → ( 3 · 𝐶 ) ∈ ℂ ) |
| 16 |
12 15
|
subcld |
⊢ ( 𝜑 → ( ( 𝐵 ↑ 2 ) − ( 3 · 𝐶 ) ) ∈ ℂ ) |
| 17 |
9 16
|
eqeltrd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 18 |
13
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℂ ) |
| 19 |
|
3ne0 |
⊢ 3 ≠ 0 |
| 20 |
19
|
a1i |
⊢ ( 𝜑 → 3 ≠ 0 ) |
| 21 |
17 18 20
|
divcld |
⊢ ( 𝜑 → ( 𝑀 / 3 ) ∈ ℂ ) |
| 22 |
21
|
negcld |
⊢ ( 𝜑 → - ( 𝑀 / 3 ) ∈ ℂ ) |
| 23 |
|
2cn |
⊢ 2 ∈ ℂ |
| 24 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 25 |
|
expcl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝐵 ↑ 3 ) ∈ ℂ ) |
| 26 |
1 24 25
|
sylancl |
⊢ ( 𝜑 → ( 𝐵 ↑ 3 ) ∈ ℂ ) |
| 27 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ ( 𝐵 ↑ 3 ) ∈ ℂ ) → ( 2 · ( 𝐵 ↑ 3 ) ) ∈ ℂ ) |
| 28 |
23 26 27
|
sylancr |
⊢ ( 𝜑 → ( 2 · ( 𝐵 ↑ 3 ) ) ∈ ℂ ) |
| 29 |
|
9cn |
⊢ 9 ∈ ℂ |
| 30 |
1 2
|
mulcld |
⊢ ( 𝜑 → ( 𝐵 · 𝐶 ) ∈ ℂ ) |
| 31 |
|
mulcl |
⊢ ( ( 9 ∈ ℂ ∧ ( 𝐵 · 𝐶 ) ∈ ℂ ) → ( 9 · ( 𝐵 · 𝐶 ) ) ∈ ℂ ) |
| 32 |
29 30 31
|
sylancr |
⊢ ( 𝜑 → ( 9 · ( 𝐵 · 𝐶 ) ) ∈ ℂ ) |
| 33 |
28 32
|
subcld |
⊢ ( 𝜑 → ( ( 2 · ( 𝐵 ↑ 3 ) ) − ( 9 · ( 𝐵 · 𝐶 ) ) ) ∈ ℂ ) |
| 34 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 35 |
|
7nn |
⊢ 7 ∈ ℕ |
| 36 |
34 35
|
decnncl |
⊢ ; 2 7 ∈ ℕ |
| 37 |
36
|
nncni |
⊢ ; 2 7 ∈ ℂ |
| 38 |
|
mulcl |
⊢ ( ( ; 2 7 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ; 2 7 · 𝐷 ) ∈ ℂ ) |
| 39 |
37 3 38
|
sylancr |
⊢ ( 𝜑 → ( ; 2 7 · 𝐷 ) ∈ ℂ ) |
| 40 |
33 39
|
addcld |
⊢ ( 𝜑 → ( ( ( 2 · ( 𝐵 ↑ 3 ) ) − ( 9 · ( 𝐵 · 𝐶 ) ) ) + ( ; 2 7 · 𝐷 ) ) ∈ ℂ ) |
| 41 |
10 40
|
eqeltrd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 42 |
37
|
a1i |
⊢ ( 𝜑 → ; 2 7 ∈ ℂ ) |
| 43 |
36
|
nnne0i |
⊢ ; 2 7 ≠ 0 |
| 44 |
43
|
a1i |
⊢ ( 𝜑 → ; 2 7 ≠ 0 ) |
| 45 |
41 42 44
|
divcld |
⊢ ( 𝜑 → ( 𝑁 / ; 2 7 ) ∈ ℂ ) |
| 46 |
1 18 20
|
divcld |
⊢ ( 𝜑 → ( 𝐵 / 3 ) ∈ ℂ ) |
| 47 |
4 46
|
addcld |
⊢ ( 𝜑 → ( 𝑋 + ( 𝐵 / 3 ) ) ∈ ℂ ) |
| 48 |
5 18 20
|
divcld |
⊢ ( 𝜑 → ( 𝑇 / 3 ) ∈ ℂ ) |
| 49 |
48
|
negcld |
⊢ ( 𝜑 → - ( 𝑇 / 3 ) ∈ ℂ ) |
| 50 |
|
3nn |
⊢ 3 ∈ ℕ |
| 51 |
50
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℕ ) |
| 52 |
|
n2dvds3 |
⊢ ¬ 2 ∥ 3 |
| 53 |
52
|
a1i |
⊢ ( 𝜑 → ¬ 2 ∥ 3 ) |
| 54 |
|
oexpneg |
⊢ ( ( ( 𝑇 / 3 ) ∈ ℂ ∧ 3 ∈ ℕ ∧ ¬ 2 ∥ 3 ) → ( - ( 𝑇 / 3 ) ↑ 3 ) = - ( ( 𝑇 / 3 ) ↑ 3 ) ) |
| 55 |
48 51 53 54
|
syl3anc |
⊢ ( 𝜑 → ( - ( 𝑇 / 3 ) ↑ 3 ) = - ( ( 𝑇 / 3 ) ↑ 3 ) ) |
| 56 |
24
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℕ0 ) |
| 57 |
5 18 20 56
|
expdivd |
⊢ ( 𝜑 → ( ( 𝑇 / 3 ) ↑ 3 ) = ( ( 𝑇 ↑ 3 ) / ( 3 ↑ 3 ) ) ) |
| 58 |
|
3exp3 |
⊢ ( 3 ↑ 3 ) = ; 2 7 |
| 59 |
58
|
a1i |
⊢ ( 𝜑 → ( 3 ↑ 3 ) = ; 2 7 ) |
| 60 |
6 59
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑇 ↑ 3 ) / ( 3 ↑ 3 ) ) = ( ( ( 𝑁 + 𝐺 ) / 2 ) / ; 2 7 ) ) |
| 61 |
41 7
|
addcld |
⊢ ( 𝜑 → ( 𝑁 + 𝐺 ) ∈ ℂ ) |
| 62 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 63 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 64 |
63
|
a1i |
⊢ ( 𝜑 → 2 ≠ 0 ) |
| 65 |
61 62 42 64 44
|
divdiv32d |
⊢ ( 𝜑 → ( ( ( 𝑁 + 𝐺 ) / 2 ) / ; 2 7 ) = ( ( ( 𝑁 + 𝐺 ) / ; 2 7 ) / 2 ) ) |
| 66 |
41 7
|
addcomd |
⊢ ( 𝜑 → ( 𝑁 + 𝐺 ) = ( 𝐺 + 𝑁 ) ) |
| 67 |
66
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑁 + 𝐺 ) / ; 2 7 ) = ( ( 𝐺 + 𝑁 ) / ; 2 7 ) ) |
| 68 |
7 41 42 44
|
divdird |
⊢ ( 𝜑 → ( ( 𝐺 + 𝑁 ) / ; 2 7 ) = ( ( 𝐺 / ; 2 7 ) + ( 𝑁 / ; 2 7 ) ) ) |
| 69 |
67 68
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑁 + 𝐺 ) / ; 2 7 ) = ( ( 𝐺 / ; 2 7 ) + ( 𝑁 / ; 2 7 ) ) ) |
| 70 |
69
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑁 + 𝐺 ) / ; 2 7 ) / 2 ) = ( ( ( 𝐺 / ; 2 7 ) + ( 𝑁 / ; 2 7 ) ) / 2 ) ) |
| 71 |
7 42 44
|
divcld |
⊢ ( 𝜑 → ( 𝐺 / ; 2 7 ) ∈ ℂ ) |
| 72 |
71 45 62 64
|
divdird |
⊢ ( 𝜑 → ( ( ( 𝐺 / ; 2 7 ) + ( 𝑁 / ; 2 7 ) ) / 2 ) = ( ( ( 𝐺 / ; 2 7 ) / 2 ) + ( ( 𝑁 / ; 2 7 ) / 2 ) ) ) |
| 73 |
65 70 72
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑁 + 𝐺 ) / 2 ) / ; 2 7 ) = ( ( ( 𝐺 / ; 2 7 ) / 2 ) + ( ( 𝑁 / ; 2 7 ) / 2 ) ) ) |
| 74 |
57 60 73
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑇 / 3 ) ↑ 3 ) = ( ( ( 𝐺 / ; 2 7 ) / 2 ) + ( ( 𝑁 / ; 2 7 ) / 2 ) ) ) |
| 75 |
74
|
negeqd |
⊢ ( 𝜑 → - ( ( 𝑇 / 3 ) ↑ 3 ) = - ( ( ( 𝐺 / ; 2 7 ) / 2 ) + ( ( 𝑁 / ; 2 7 ) / 2 ) ) ) |
| 76 |
71
|
halfcld |
⊢ ( 𝜑 → ( ( 𝐺 / ; 2 7 ) / 2 ) ∈ ℂ ) |
| 77 |
45
|
halfcld |
⊢ ( 𝜑 → ( ( 𝑁 / ; 2 7 ) / 2 ) ∈ ℂ ) |
| 78 |
76 77
|
negdi2d |
⊢ ( 𝜑 → - ( ( ( 𝐺 / ; 2 7 ) / 2 ) + ( ( 𝑁 / ; 2 7 ) / 2 ) ) = ( - ( ( 𝐺 / ; 2 7 ) / 2 ) − ( ( 𝑁 / ; 2 7 ) / 2 ) ) ) |
| 79 |
55 75 78
|
3eqtrd |
⊢ ( 𝜑 → ( - ( 𝑇 / 3 ) ↑ 3 ) = ( - ( ( 𝐺 / ; 2 7 ) / 2 ) − ( ( 𝑁 / ; 2 7 ) / 2 ) ) ) |
| 80 |
76
|
negcld |
⊢ ( 𝜑 → - ( ( 𝐺 / ; 2 7 ) / 2 ) ∈ ℂ ) |
| 81 |
|
sqneg |
⊢ ( ( ( 𝐺 / ; 2 7 ) / 2 ) ∈ ℂ → ( - ( ( 𝐺 / ; 2 7 ) / 2 ) ↑ 2 ) = ( ( ( 𝐺 / ; 2 7 ) / 2 ) ↑ 2 ) ) |
| 82 |
76 81
|
syl |
⊢ ( 𝜑 → ( - ( ( 𝐺 / ; 2 7 ) / 2 ) ↑ 2 ) = ( ( ( 𝐺 / ; 2 7 ) / 2 ) ↑ 2 ) ) |
| 83 |
71 62 64
|
sqdivd |
⊢ ( 𝜑 → ( ( ( 𝐺 / ; 2 7 ) / 2 ) ↑ 2 ) = ( ( ( 𝐺 / ; 2 7 ) ↑ 2 ) / ( 2 ↑ 2 ) ) ) |
| 84 |
45 62 64
|
sqdivd |
⊢ ( 𝜑 → ( ( ( 𝑁 / ; 2 7 ) / 2 ) ↑ 2 ) = ( ( ( 𝑁 / ; 2 7 ) ↑ 2 ) / ( 2 ↑ 2 ) ) ) |
| 85 |
41 42 44
|
sqdivd |
⊢ ( 𝜑 → ( ( 𝑁 / ; 2 7 ) ↑ 2 ) = ( ( 𝑁 ↑ 2 ) / ( ; 2 7 ↑ 2 ) ) ) |
| 86 |
85
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑁 / ; 2 7 ) ↑ 2 ) / ( 2 ↑ 2 ) ) = ( ( ( 𝑁 ↑ 2 ) / ( ; 2 7 ↑ 2 ) ) / ( 2 ↑ 2 ) ) ) |
| 87 |
84 86
|
eqtr2d |
⊢ ( 𝜑 → ( ( ( 𝑁 ↑ 2 ) / ( ; 2 7 ↑ 2 ) ) / ( 2 ↑ 2 ) ) = ( ( ( 𝑁 / ; 2 7 ) / 2 ) ↑ 2 ) ) |
| 88 |
|
4cn |
⊢ 4 ∈ ℂ |
| 89 |
88
|
a1i |
⊢ ( 𝜑 → 4 ∈ ℂ ) |
| 90 |
|
expcl |
⊢ ( ( 𝑀 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝑀 ↑ 3 ) ∈ ℂ ) |
| 91 |
17 24 90
|
sylancl |
⊢ ( 𝜑 → ( 𝑀 ↑ 3 ) ∈ ℂ ) |
| 92 |
37
|
sqcli |
⊢ ( ; 2 7 ↑ 2 ) ∈ ℂ |
| 93 |
92
|
a1i |
⊢ ( 𝜑 → ( ; 2 7 ↑ 2 ) ∈ ℂ ) |
| 94 |
|
sqne0 |
⊢ ( ; 2 7 ∈ ℂ → ( ( ; 2 7 ↑ 2 ) ≠ 0 ↔ ; 2 7 ≠ 0 ) ) |
| 95 |
42 94
|
syl |
⊢ ( 𝜑 → ( ( ; 2 7 ↑ 2 ) ≠ 0 ↔ ; 2 7 ≠ 0 ) ) |
| 96 |
44 95
|
mpbird |
⊢ ( 𝜑 → ( ; 2 7 ↑ 2 ) ≠ 0 ) |
| 97 |
89 91 93 96
|
divassd |
⊢ ( 𝜑 → ( ( 4 · ( 𝑀 ↑ 3 ) ) / ( ; 2 7 ↑ 2 ) ) = ( 4 · ( ( 𝑀 ↑ 3 ) / ( ; 2 7 ↑ 2 ) ) ) ) |
| 98 |
29
|
a1i |
⊢ ( 𝜑 → 9 ∈ ℂ ) |
| 99 |
|
9nn |
⊢ 9 ∈ ℕ |
| 100 |
99
|
nnne0i |
⊢ 9 ≠ 0 |
| 101 |
100
|
a1i |
⊢ ( 𝜑 → 9 ≠ 0 ) |
| 102 |
17 98 101 56
|
expdivd |
⊢ ( 𝜑 → ( ( 𝑀 / 9 ) ↑ 3 ) = ( ( 𝑀 ↑ 3 ) / ( 9 ↑ 3 ) ) ) |
| 103 |
23 13
|
mulcomi |
⊢ ( 2 · 3 ) = ( 3 · 2 ) |
| 104 |
103
|
oveq2i |
⊢ ( 3 ↑ ( 2 · 3 ) ) = ( 3 ↑ ( 3 · 2 ) ) |
| 105 |
|
expmul |
⊢ ( ( 3 ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 3 ∈ ℕ0 ) → ( 3 ↑ ( 2 · 3 ) ) = ( ( 3 ↑ 2 ) ↑ 3 ) ) |
| 106 |
13 34 24 105
|
mp3an |
⊢ ( 3 ↑ ( 2 · 3 ) ) = ( ( 3 ↑ 2 ) ↑ 3 ) |
| 107 |
|
expmul |
⊢ ( ( 3 ∈ ℂ ∧ 3 ∈ ℕ0 ∧ 2 ∈ ℕ0 ) → ( 3 ↑ ( 3 · 2 ) ) = ( ( 3 ↑ 3 ) ↑ 2 ) ) |
| 108 |
13 24 34 107
|
mp3an |
⊢ ( 3 ↑ ( 3 · 2 ) ) = ( ( 3 ↑ 3 ) ↑ 2 ) |
| 109 |
104 106 108
|
3eqtr3i |
⊢ ( ( 3 ↑ 2 ) ↑ 3 ) = ( ( 3 ↑ 3 ) ↑ 2 ) |
| 110 |
|
sq3 |
⊢ ( 3 ↑ 2 ) = 9 |
| 111 |
110
|
oveq1i |
⊢ ( ( 3 ↑ 2 ) ↑ 3 ) = ( 9 ↑ 3 ) |
| 112 |
58
|
oveq1i |
⊢ ( ( 3 ↑ 3 ) ↑ 2 ) = ( ; 2 7 ↑ 2 ) |
| 113 |
109 111 112
|
3eqtr3i |
⊢ ( 9 ↑ 3 ) = ( ; 2 7 ↑ 2 ) |
| 114 |
113
|
oveq2i |
⊢ ( ( 𝑀 ↑ 3 ) / ( 9 ↑ 3 ) ) = ( ( 𝑀 ↑ 3 ) / ( ; 2 7 ↑ 2 ) ) |
| 115 |
102 114
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝑀 / 9 ) ↑ 3 ) = ( ( 𝑀 ↑ 3 ) / ( ; 2 7 ↑ 2 ) ) ) |
| 116 |
115
|
oveq2d |
⊢ ( 𝜑 → ( 4 · ( ( 𝑀 / 9 ) ↑ 3 ) ) = ( 4 · ( ( 𝑀 ↑ 3 ) / ( ; 2 7 ↑ 2 ) ) ) ) |
| 117 |
97 116
|
eqtr4d |
⊢ ( 𝜑 → ( ( 4 · ( 𝑀 ↑ 3 ) ) / ( ; 2 7 ↑ 2 ) ) = ( 4 · ( ( 𝑀 / 9 ) ↑ 3 ) ) ) |
| 118 |
117
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 4 · ( 𝑀 ↑ 3 ) ) / ( ; 2 7 ↑ 2 ) ) / ( 2 ↑ 2 ) ) = ( ( 4 · ( ( 𝑀 / 9 ) ↑ 3 ) ) / ( 2 ↑ 2 ) ) ) |
| 119 |
|
sq2 |
⊢ ( 2 ↑ 2 ) = 4 |
| 120 |
119
|
oveq2i |
⊢ ( ( 4 · ( ( 𝑀 / 9 ) ↑ 3 ) ) / ( 2 ↑ 2 ) ) = ( ( 4 · ( ( 𝑀 / 9 ) ↑ 3 ) ) / 4 ) |
| 121 |
17 98 101
|
divcld |
⊢ ( 𝜑 → ( 𝑀 / 9 ) ∈ ℂ ) |
| 122 |
|
expcl |
⊢ ( ( ( 𝑀 / 9 ) ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( ( 𝑀 / 9 ) ↑ 3 ) ∈ ℂ ) |
| 123 |
121 24 122
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑀 / 9 ) ↑ 3 ) ∈ ℂ ) |
| 124 |
|
4ne0 |
⊢ 4 ≠ 0 |
| 125 |
124
|
a1i |
⊢ ( 𝜑 → 4 ≠ 0 ) |
| 126 |
123 89 125
|
divcan3d |
⊢ ( 𝜑 → ( ( 4 · ( ( 𝑀 / 9 ) ↑ 3 ) ) / 4 ) = ( ( 𝑀 / 9 ) ↑ 3 ) ) |
| 127 |
120 126
|
eqtrid |
⊢ ( 𝜑 → ( ( 4 · ( ( 𝑀 / 9 ) ↑ 3 ) ) / ( 2 ↑ 2 ) ) = ( ( 𝑀 / 9 ) ↑ 3 ) ) |
| 128 |
118 127
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 4 · ( 𝑀 ↑ 3 ) ) / ( ; 2 7 ↑ 2 ) ) / ( 2 ↑ 2 ) ) = ( ( 𝑀 / 9 ) ↑ 3 ) ) |
| 129 |
87 128
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( 𝑁 ↑ 2 ) / ( ; 2 7 ↑ 2 ) ) / ( 2 ↑ 2 ) ) − ( ( ( 4 · ( 𝑀 ↑ 3 ) ) / ( ; 2 7 ↑ 2 ) ) / ( 2 ↑ 2 ) ) ) = ( ( ( ( 𝑁 / ; 2 7 ) / 2 ) ↑ 2 ) − ( ( 𝑀 / 9 ) ↑ 3 ) ) ) |
| 130 |
41
|
sqcld |
⊢ ( 𝜑 → ( 𝑁 ↑ 2 ) ∈ ℂ ) |
| 131 |
130 93 96
|
divcld |
⊢ ( 𝜑 → ( ( 𝑁 ↑ 2 ) / ( ; 2 7 ↑ 2 ) ) ∈ ℂ ) |
| 132 |
|
mulcl |
⊢ ( ( 4 ∈ ℂ ∧ ( 𝑀 ↑ 3 ) ∈ ℂ ) → ( 4 · ( 𝑀 ↑ 3 ) ) ∈ ℂ ) |
| 133 |
88 91 132
|
sylancr |
⊢ ( 𝜑 → ( 4 · ( 𝑀 ↑ 3 ) ) ∈ ℂ ) |
| 134 |
133 93 96
|
divcld |
⊢ ( 𝜑 → ( ( 4 · ( 𝑀 ↑ 3 ) ) / ( ; 2 7 ↑ 2 ) ) ∈ ℂ ) |
| 135 |
23
|
sqcli |
⊢ ( 2 ↑ 2 ) ∈ ℂ |
| 136 |
135
|
a1i |
⊢ ( 𝜑 → ( 2 ↑ 2 ) ∈ ℂ ) |
| 137 |
119 124
|
eqnetri |
⊢ ( 2 ↑ 2 ) ≠ 0 |
| 138 |
137
|
a1i |
⊢ ( 𝜑 → ( 2 ↑ 2 ) ≠ 0 ) |
| 139 |
131 134 136 138
|
divsubdird |
⊢ ( 𝜑 → ( ( ( ( 𝑁 ↑ 2 ) / ( ; 2 7 ↑ 2 ) ) − ( ( 4 · ( 𝑀 ↑ 3 ) ) / ( ; 2 7 ↑ 2 ) ) ) / ( 2 ↑ 2 ) ) = ( ( ( ( 𝑁 ↑ 2 ) / ( ; 2 7 ↑ 2 ) ) / ( 2 ↑ 2 ) ) − ( ( ( 4 · ( 𝑀 ↑ 3 ) ) / ( ; 2 7 ↑ 2 ) ) / ( 2 ↑ 2 ) ) ) ) |
| 140 |
77
|
sqcld |
⊢ ( 𝜑 → ( ( ( 𝑁 / ; 2 7 ) / 2 ) ↑ 2 ) ∈ ℂ ) |
| 141 |
140 123
|
negsubd |
⊢ ( 𝜑 → ( ( ( ( 𝑁 / ; 2 7 ) / 2 ) ↑ 2 ) + - ( ( 𝑀 / 9 ) ↑ 3 ) ) = ( ( ( ( 𝑁 / ; 2 7 ) / 2 ) ↑ 2 ) − ( ( 𝑀 / 9 ) ↑ 3 ) ) ) |
| 142 |
129 139 141
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( ( 𝑁 ↑ 2 ) / ( ; 2 7 ↑ 2 ) ) − ( ( 4 · ( 𝑀 ↑ 3 ) ) / ( ; 2 7 ↑ 2 ) ) ) / ( 2 ↑ 2 ) ) = ( ( ( ( 𝑁 / ; 2 7 ) / 2 ) ↑ 2 ) + - ( ( 𝑀 / 9 ) ↑ 3 ) ) ) |
| 143 |
7 42 44
|
sqdivd |
⊢ ( 𝜑 → ( ( 𝐺 / ; 2 7 ) ↑ 2 ) = ( ( 𝐺 ↑ 2 ) / ( ; 2 7 ↑ 2 ) ) ) |
| 144 |
8
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐺 ↑ 2 ) / ( ; 2 7 ↑ 2 ) ) = ( ( ( 𝑁 ↑ 2 ) − ( 4 · ( 𝑀 ↑ 3 ) ) ) / ( ; 2 7 ↑ 2 ) ) ) |
| 145 |
130 133 93 96
|
divsubdird |
⊢ ( 𝜑 → ( ( ( 𝑁 ↑ 2 ) − ( 4 · ( 𝑀 ↑ 3 ) ) ) / ( ; 2 7 ↑ 2 ) ) = ( ( ( 𝑁 ↑ 2 ) / ( ; 2 7 ↑ 2 ) ) − ( ( 4 · ( 𝑀 ↑ 3 ) ) / ( ; 2 7 ↑ 2 ) ) ) ) |
| 146 |
143 144 145
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐺 / ; 2 7 ) ↑ 2 ) = ( ( ( 𝑁 ↑ 2 ) / ( ; 2 7 ↑ 2 ) ) − ( ( 4 · ( 𝑀 ↑ 3 ) ) / ( ; 2 7 ↑ 2 ) ) ) ) |
| 147 |
146
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐺 / ; 2 7 ) ↑ 2 ) / ( 2 ↑ 2 ) ) = ( ( ( ( 𝑁 ↑ 2 ) / ( ; 2 7 ↑ 2 ) ) − ( ( 4 · ( 𝑀 ↑ 3 ) ) / ( ; 2 7 ↑ 2 ) ) ) / ( 2 ↑ 2 ) ) ) |
| 148 |
|
oexpneg |
⊢ ( ( ( 𝑀 / 9 ) ∈ ℂ ∧ 3 ∈ ℕ ∧ ¬ 2 ∥ 3 ) → ( - ( 𝑀 / 9 ) ↑ 3 ) = - ( ( 𝑀 / 9 ) ↑ 3 ) ) |
| 149 |
121 51 53 148
|
syl3anc |
⊢ ( 𝜑 → ( - ( 𝑀 / 9 ) ↑ 3 ) = - ( ( 𝑀 / 9 ) ↑ 3 ) ) |
| 150 |
149
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( 𝑁 / ; 2 7 ) / 2 ) ↑ 2 ) + ( - ( 𝑀 / 9 ) ↑ 3 ) ) = ( ( ( ( 𝑁 / ; 2 7 ) / 2 ) ↑ 2 ) + - ( ( 𝑀 / 9 ) ↑ 3 ) ) ) |
| 151 |
142 147 150
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( 𝐺 / ; 2 7 ) ↑ 2 ) / ( 2 ↑ 2 ) ) = ( ( ( ( 𝑁 / ; 2 7 ) / 2 ) ↑ 2 ) + ( - ( 𝑀 / 9 ) ↑ 3 ) ) ) |
| 152 |
82 83 151
|
3eqtrd |
⊢ ( 𝜑 → ( - ( ( 𝐺 / ; 2 7 ) / 2 ) ↑ 2 ) = ( ( ( ( 𝑁 / ; 2 7 ) / 2 ) ↑ 2 ) + ( - ( 𝑀 / 9 ) ↑ 3 ) ) ) |
| 153 |
17 18 18 20 20
|
divdiv1d |
⊢ ( 𝜑 → ( ( 𝑀 / 3 ) / 3 ) = ( 𝑀 / ( 3 · 3 ) ) ) |
| 154 |
|
3t3e9 |
⊢ ( 3 · 3 ) = 9 |
| 155 |
154
|
oveq2i |
⊢ ( 𝑀 / ( 3 · 3 ) ) = ( 𝑀 / 9 ) |
| 156 |
153 155
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝑀 / 3 ) / 3 ) = ( 𝑀 / 9 ) ) |
| 157 |
156
|
negeqd |
⊢ ( 𝜑 → - ( ( 𝑀 / 3 ) / 3 ) = - ( 𝑀 / 9 ) ) |
| 158 |
21 18 20
|
divnegd |
⊢ ( 𝜑 → - ( ( 𝑀 / 3 ) / 3 ) = ( - ( 𝑀 / 3 ) / 3 ) ) |
| 159 |
157 158
|
eqtr3d |
⊢ ( 𝜑 → - ( 𝑀 / 9 ) = ( - ( 𝑀 / 3 ) / 3 ) ) |
| 160 |
|
eqidd |
⊢ ( 𝜑 → ( ( 𝑁 / ; 2 7 ) / 2 ) = ( ( 𝑁 / ; 2 7 ) / 2 ) ) |
| 161 |
5 18 11 20
|
divne0d |
⊢ ( 𝜑 → ( 𝑇 / 3 ) ≠ 0 ) |
| 162 |
48 161
|
negne0d |
⊢ ( 𝜑 → - ( 𝑇 / 3 ) ≠ 0 ) |
| 163 |
22 45 47 49 79 80 152 159 160 162
|
dcubic |
⊢ ( 𝜑 → ( ( ( ( 𝑋 + ( 𝐵 / 3 ) ) ↑ 3 ) + ( ( - ( 𝑀 / 3 ) · ( 𝑋 + ( 𝐵 / 3 ) ) ) + ( 𝑁 / ; 2 7 ) ) ) = 0 ↔ ∃ 𝑟 ∈ ℂ ( ( 𝑟 ↑ 3 ) = 1 ∧ ( 𝑋 + ( 𝐵 / 3 ) ) = ( ( 𝑟 · - ( 𝑇 / 3 ) ) − ( - ( 𝑀 / 9 ) / ( 𝑟 · - ( 𝑇 / 3 ) ) ) ) ) ) ) |
| 164 |
|
binom3 |
⊢ ( ( 𝑋 ∈ ℂ ∧ ( 𝐵 / 3 ) ∈ ℂ ) → ( ( 𝑋 + ( 𝐵 / 3 ) ) ↑ 3 ) = ( ( ( 𝑋 ↑ 3 ) + ( 3 · ( ( 𝑋 ↑ 2 ) · ( 𝐵 / 3 ) ) ) ) + ( ( 3 · ( 𝑋 · ( ( 𝐵 / 3 ) ↑ 2 ) ) ) + ( ( 𝐵 / 3 ) ↑ 3 ) ) ) ) |
| 165 |
4 46 164
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑋 + ( 𝐵 / 3 ) ) ↑ 3 ) = ( ( ( 𝑋 ↑ 3 ) + ( 3 · ( ( 𝑋 ↑ 2 ) · ( 𝐵 / 3 ) ) ) ) + ( ( 3 · ( 𝑋 · ( ( 𝐵 / 3 ) ↑ 2 ) ) ) + ( ( 𝐵 / 3 ) ↑ 3 ) ) ) ) |
| 166 |
4
|
sqcld |
⊢ ( 𝜑 → ( 𝑋 ↑ 2 ) ∈ ℂ ) |
| 167 |
18 166 46
|
mul12d |
⊢ ( 𝜑 → ( 3 · ( ( 𝑋 ↑ 2 ) · ( 𝐵 / 3 ) ) ) = ( ( 𝑋 ↑ 2 ) · ( 3 · ( 𝐵 / 3 ) ) ) ) |
| 168 |
1 18 20
|
divcan2d |
⊢ ( 𝜑 → ( 3 · ( 𝐵 / 3 ) ) = 𝐵 ) |
| 169 |
168
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑋 ↑ 2 ) · ( 3 · ( 𝐵 / 3 ) ) ) = ( ( 𝑋 ↑ 2 ) · 𝐵 ) ) |
| 170 |
166 1
|
mulcomd |
⊢ ( 𝜑 → ( ( 𝑋 ↑ 2 ) · 𝐵 ) = ( 𝐵 · ( 𝑋 ↑ 2 ) ) ) |
| 171 |
167 169 170
|
3eqtrd |
⊢ ( 𝜑 → ( 3 · ( ( 𝑋 ↑ 2 ) · ( 𝐵 / 3 ) ) ) = ( 𝐵 · ( 𝑋 ↑ 2 ) ) ) |
| 172 |
171
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑋 ↑ 3 ) + ( 3 · ( ( 𝑋 ↑ 2 ) · ( 𝐵 / 3 ) ) ) ) = ( ( 𝑋 ↑ 3 ) + ( 𝐵 · ( 𝑋 ↑ 2 ) ) ) ) |
| 173 |
172
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑋 ↑ 3 ) + ( 3 · ( ( 𝑋 ↑ 2 ) · ( 𝐵 / 3 ) ) ) ) + ( ( 3 · ( 𝑋 · ( ( 𝐵 / 3 ) ↑ 2 ) ) ) + ( ( 𝐵 / 3 ) ↑ 3 ) ) ) = ( ( ( 𝑋 ↑ 3 ) + ( 𝐵 · ( 𝑋 ↑ 2 ) ) ) + ( ( 3 · ( 𝑋 · ( ( 𝐵 / 3 ) ↑ 2 ) ) ) + ( ( 𝐵 / 3 ) ↑ 3 ) ) ) ) |
| 174 |
165 173
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑋 + ( 𝐵 / 3 ) ) ↑ 3 ) = ( ( ( 𝑋 ↑ 3 ) + ( 𝐵 · ( 𝑋 ↑ 2 ) ) ) + ( ( 3 · ( 𝑋 · ( ( 𝐵 / 3 ) ↑ 2 ) ) ) + ( ( 𝐵 / 3 ) ↑ 3 ) ) ) ) |
| 175 |
174
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑋 + ( 𝐵 / 3 ) ) ↑ 3 ) + ( ( - ( 𝑀 / 3 ) · ( 𝑋 + ( 𝐵 / 3 ) ) ) + ( 𝑁 / ; 2 7 ) ) ) = ( ( ( ( 𝑋 ↑ 3 ) + ( 𝐵 · ( 𝑋 ↑ 2 ) ) ) + ( ( 3 · ( 𝑋 · ( ( 𝐵 / 3 ) ↑ 2 ) ) ) + ( ( 𝐵 / 3 ) ↑ 3 ) ) ) + ( ( - ( 𝑀 / 3 ) · ( 𝑋 + ( 𝐵 / 3 ) ) ) + ( 𝑁 / ; 2 7 ) ) ) ) |
| 176 |
|
expcl |
⊢ ( ( 𝑋 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝑋 ↑ 3 ) ∈ ℂ ) |
| 177 |
4 24 176
|
sylancl |
⊢ ( 𝜑 → ( 𝑋 ↑ 3 ) ∈ ℂ ) |
| 178 |
1 166
|
mulcld |
⊢ ( 𝜑 → ( 𝐵 · ( 𝑋 ↑ 2 ) ) ∈ ℂ ) |
| 179 |
177 178
|
addcld |
⊢ ( 𝜑 → ( ( 𝑋 ↑ 3 ) + ( 𝐵 · ( 𝑋 ↑ 2 ) ) ) ∈ ℂ ) |
| 180 |
46
|
sqcld |
⊢ ( 𝜑 → ( ( 𝐵 / 3 ) ↑ 2 ) ∈ ℂ ) |
| 181 |
4 180
|
mulcld |
⊢ ( 𝜑 → ( 𝑋 · ( ( 𝐵 / 3 ) ↑ 2 ) ) ∈ ℂ ) |
| 182 |
18 181
|
mulcld |
⊢ ( 𝜑 → ( 3 · ( 𝑋 · ( ( 𝐵 / 3 ) ↑ 2 ) ) ) ∈ ℂ ) |
| 183 |
|
expcl |
⊢ ( ( ( 𝐵 / 3 ) ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( ( 𝐵 / 3 ) ↑ 3 ) ∈ ℂ ) |
| 184 |
46 24 183
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐵 / 3 ) ↑ 3 ) ∈ ℂ ) |
| 185 |
182 184
|
addcld |
⊢ ( 𝜑 → ( ( 3 · ( 𝑋 · ( ( 𝐵 / 3 ) ↑ 2 ) ) ) + ( ( 𝐵 / 3 ) ↑ 3 ) ) ∈ ℂ ) |
| 186 |
22 47
|
mulcld |
⊢ ( 𝜑 → ( - ( 𝑀 / 3 ) · ( 𝑋 + ( 𝐵 / 3 ) ) ) ∈ ℂ ) |
| 187 |
186 45
|
addcld |
⊢ ( 𝜑 → ( ( - ( 𝑀 / 3 ) · ( 𝑋 + ( 𝐵 / 3 ) ) ) + ( 𝑁 / ; 2 7 ) ) ∈ ℂ ) |
| 188 |
179 185 187
|
addassd |
⊢ ( 𝜑 → ( ( ( ( 𝑋 ↑ 3 ) + ( 𝐵 · ( 𝑋 ↑ 2 ) ) ) + ( ( 3 · ( 𝑋 · ( ( 𝐵 / 3 ) ↑ 2 ) ) ) + ( ( 𝐵 / 3 ) ↑ 3 ) ) ) + ( ( - ( 𝑀 / 3 ) · ( 𝑋 + ( 𝐵 / 3 ) ) ) + ( 𝑁 / ; 2 7 ) ) ) = ( ( ( 𝑋 ↑ 3 ) + ( 𝐵 · ( 𝑋 ↑ 2 ) ) ) + ( ( ( 3 · ( 𝑋 · ( ( 𝐵 / 3 ) ↑ 2 ) ) ) + ( ( 𝐵 / 3 ) ↑ 3 ) ) + ( ( - ( 𝑀 / 3 ) · ( 𝑋 + ( 𝐵 / 3 ) ) ) + ( 𝑁 / ; 2 7 ) ) ) ) ) |
| 189 |
22 4 46
|
adddid |
⊢ ( 𝜑 → ( - ( 𝑀 / 3 ) · ( 𝑋 + ( 𝐵 / 3 ) ) ) = ( ( - ( 𝑀 / 3 ) · 𝑋 ) + ( - ( 𝑀 / 3 ) · ( 𝐵 / 3 ) ) ) ) |
| 190 |
189
|
oveq1d |
⊢ ( 𝜑 → ( ( - ( 𝑀 / 3 ) · ( 𝑋 + ( 𝐵 / 3 ) ) ) + ( 𝑁 / ; 2 7 ) ) = ( ( ( - ( 𝑀 / 3 ) · 𝑋 ) + ( - ( 𝑀 / 3 ) · ( 𝐵 / 3 ) ) ) + ( 𝑁 / ; 2 7 ) ) ) |
| 191 |
22 4
|
mulcld |
⊢ ( 𝜑 → ( - ( 𝑀 / 3 ) · 𝑋 ) ∈ ℂ ) |
| 192 |
22 46
|
mulcld |
⊢ ( 𝜑 → ( - ( 𝑀 / 3 ) · ( 𝐵 / 3 ) ) ∈ ℂ ) |
| 193 |
191 192 45
|
addassd |
⊢ ( 𝜑 → ( ( ( - ( 𝑀 / 3 ) · 𝑋 ) + ( - ( 𝑀 / 3 ) · ( 𝐵 / 3 ) ) ) + ( 𝑁 / ; 2 7 ) ) = ( ( - ( 𝑀 / 3 ) · 𝑋 ) + ( ( - ( 𝑀 / 3 ) · ( 𝐵 / 3 ) ) + ( 𝑁 / ; 2 7 ) ) ) ) |
| 194 |
9
|
oveq1d |
⊢ ( 𝜑 → ( 𝑀 / 3 ) = ( ( ( 𝐵 ↑ 2 ) − ( 3 · 𝐶 ) ) / 3 ) ) |
| 195 |
12 15 18 20
|
divsubdird |
⊢ ( 𝜑 → ( ( ( 𝐵 ↑ 2 ) − ( 3 · 𝐶 ) ) / 3 ) = ( ( ( 𝐵 ↑ 2 ) / 3 ) − ( ( 3 · 𝐶 ) / 3 ) ) ) |
| 196 |
2 18 20
|
divcan3d |
⊢ ( 𝜑 → ( ( 3 · 𝐶 ) / 3 ) = 𝐶 ) |
| 197 |
196
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐵 ↑ 2 ) / 3 ) − ( ( 3 · 𝐶 ) / 3 ) ) = ( ( ( 𝐵 ↑ 2 ) / 3 ) − 𝐶 ) ) |
| 198 |
194 195 197
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑀 / 3 ) = ( ( ( 𝐵 ↑ 2 ) / 3 ) − 𝐶 ) ) |
| 199 |
198
|
negeqd |
⊢ ( 𝜑 → - ( 𝑀 / 3 ) = - ( ( ( 𝐵 ↑ 2 ) / 3 ) − 𝐶 ) ) |
| 200 |
12 18 20
|
divcld |
⊢ ( 𝜑 → ( ( 𝐵 ↑ 2 ) / 3 ) ∈ ℂ ) |
| 201 |
200 2
|
negsubdi2d |
⊢ ( 𝜑 → - ( ( ( 𝐵 ↑ 2 ) / 3 ) − 𝐶 ) = ( 𝐶 − ( ( 𝐵 ↑ 2 ) / 3 ) ) ) |
| 202 |
199 201
|
eqtrd |
⊢ ( 𝜑 → - ( 𝑀 / 3 ) = ( 𝐶 − ( ( 𝐵 ↑ 2 ) / 3 ) ) ) |
| 203 |
202
|
oveq1d |
⊢ ( 𝜑 → ( - ( 𝑀 / 3 ) · 𝑋 ) = ( ( 𝐶 − ( ( 𝐵 ↑ 2 ) / 3 ) ) · 𝑋 ) ) |
| 204 |
2 200 4
|
subdird |
⊢ ( 𝜑 → ( ( 𝐶 − ( ( 𝐵 ↑ 2 ) / 3 ) ) · 𝑋 ) = ( ( 𝐶 · 𝑋 ) − ( ( ( 𝐵 ↑ 2 ) / 3 ) · 𝑋 ) ) ) |
| 205 |
200 4
|
mulcomd |
⊢ ( 𝜑 → ( ( ( 𝐵 ↑ 2 ) / 3 ) · 𝑋 ) = ( 𝑋 · ( ( 𝐵 ↑ 2 ) / 3 ) ) ) |
| 206 |
13
|
sqvali |
⊢ ( 3 ↑ 2 ) = ( 3 · 3 ) |
| 207 |
206
|
oveq2i |
⊢ ( ( 𝐵 ↑ 2 ) / ( 3 ↑ 2 ) ) = ( ( 𝐵 ↑ 2 ) / ( 3 · 3 ) ) |
| 208 |
1 18 20
|
sqdivd |
⊢ ( 𝜑 → ( ( 𝐵 / 3 ) ↑ 2 ) = ( ( 𝐵 ↑ 2 ) / ( 3 ↑ 2 ) ) ) |
| 209 |
12 18 18 20 20
|
divdiv1d |
⊢ ( 𝜑 → ( ( ( 𝐵 ↑ 2 ) / 3 ) / 3 ) = ( ( 𝐵 ↑ 2 ) / ( 3 · 3 ) ) ) |
| 210 |
207 208 209
|
3eqtr4a |
⊢ ( 𝜑 → ( ( 𝐵 / 3 ) ↑ 2 ) = ( ( ( 𝐵 ↑ 2 ) / 3 ) / 3 ) ) |
| 211 |
210
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( ( 𝐵 / 3 ) ↑ 2 ) ) = ( 3 · ( ( ( 𝐵 ↑ 2 ) / 3 ) / 3 ) ) ) |
| 212 |
200 18 20
|
divcan2d |
⊢ ( 𝜑 → ( 3 · ( ( ( 𝐵 ↑ 2 ) / 3 ) / 3 ) ) = ( ( 𝐵 ↑ 2 ) / 3 ) ) |
| 213 |
211 212
|
eqtrd |
⊢ ( 𝜑 → ( 3 · ( ( 𝐵 / 3 ) ↑ 2 ) ) = ( ( 𝐵 ↑ 2 ) / 3 ) ) |
| 214 |
213
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 · ( 3 · ( ( 𝐵 / 3 ) ↑ 2 ) ) ) = ( 𝑋 · ( ( 𝐵 ↑ 2 ) / 3 ) ) ) |
| 215 |
4 18 180
|
mul12d |
⊢ ( 𝜑 → ( 𝑋 · ( 3 · ( ( 𝐵 / 3 ) ↑ 2 ) ) ) = ( 3 · ( 𝑋 · ( ( 𝐵 / 3 ) ↑ 2 ) ) ) ) |
| 216 |
205 214 215
|
3eqtr2d |
⊢ ( 𝜑 → ( ( ( 𝐵 ↑ 2 ) / 3 ) · 𝑋 ) = ( 3 · ( 𝑋 · ( ( 𝐵 / 3 ) ↑ 2 ) ) ) ) |
| 217 |
216
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐶 · 𝑋 ) − ( ( ( 𝐵 ↑ 2 ) / 3 ) · 𝑋 ) ) = ( ( 𝐶 · 𝑋 ) − ( 3 · ( 𝑋 · ( ( 𝐵 / 3 ) ↑ 2 ) ) ) ) ) |
| 218 |
203 204 217
|
3eqtrd |
⊢ ( 𝜑 → ( - ( 𝑀 / 3 ) · 𝑋 ) = ( ( 𝐶 · 𝑋 ) − ( 3 · ( 𝑋 · ( ( 𝐵 / 3 ) ↑ 2 ) ) ) ) ) |
| 219 |
202
|
oveq1d |
⊢ ( 𝜑 → ( - ( 𝑀 / 3 ) · ( 𝐵 / 3 ) ) = ( ( 𝐶 − ( ( 𝐵 ↑ 2 ) / 3 ) ) · ( 𝐵 / 3 ) ) ) |
| 220 |
2 200 46
|
subdird |
⊢ ( 𝜑 → ( ( 𝐶 − ( ( 𝐵 ↑ 2 ) / 3 ) ) · ( 𝐵 / 3 ) ) = ( ( 𝐶 · ( 𝐵 / 3 ) ) − ( ( ( 𝐵 ↑ 2 ) / 3 ) · ( 𝐵 / 3 ) ) ) ) |
| 221 |
2 1 18 20
|
divassd |
⊢ ( 𝜑 → ( ( 𝐶 · 𝐵 ) / 3 ) = ( 𝐶 · ( 𝐵 / 3 ) ) ) |
| 222 |
2 1
|
mulcomd |
⊢ ( 𝜑 → ( 𝐶 · 𝐵 ) = ( 𝐵 · 𝐶 ) ) |
| 223 |
222
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐶 · 𝐵 ) / 3 ) = ( ( 𝐵 · 𝐶 ) / 3 ) ) |
| 224 |
221 223
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐶 · ( 𝐵 / 3 ) ) = ( ( 𝐵 · 𝐶 ) / 3 ) ) |
| 225 |
12 18 1 18 20 20
|
divmuldivd |
⊢ ( 𝜑 → ( ( ( 𝐵 ↑ 2 ) / 3 ) · ( 𝐵 / 3 ) ) = ( ( ( 𝐵 ↑ 2 ) · 𝐵 ) / ( 3 · 3 ) ) ) |
| 226 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
| 227 |
226
|
oveq2i |
⊢ ( 𝐵 ↑ 3 ) = ( 𝐵 ↑ ( 2 + 1 ) ) |
| 228 |
|
expp1 |
⊢ ( ( 𝐵 ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( 𝐵 ↑ ( 2 + 1 ) ) = ( ( 𝐵 ↑ 2 ) · 𝐵 ) ) |
| 229 |
1 34 228
|
sylancl |
⊢ ( 𝜑 → ( 𝐵 ↑ ( 2 + 1 ) ) = ( ( 𝐵 ↑ 2 ) · 𝐵 ) ) |
| 230 |
227 229
|
eqtr2id |
⊢ ( 𝜑 → ( ( 𝐵 ↑ 2 ) · 𝐵 ) = ( 𝐵 ↑ 3 ) ) |
| 231 |
154
|
a1i |
⊢ ( 𝜑 → ( 3 · 3 ) = 9 ) |
| 232 |
230 231
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝐵 ↑ 2 ) · 𝐵 ) / ( 3 · 3 ) ) = ( ( 𝐵 ↑ 3 ) / 9 ) ) |
| 233 |
225 232
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐵 ↑ 2 ) / 3 ) · ( 𝐵 / 3 ) ) = ( ( 𝐵 ↑ 3 ) / 9 ) ) |
| 234 |
224 233
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐶 · ( 𝐵 / 3 ) ) − ( ( ( 𝐵 ↑ 2 ) / 3 ) · ( 𝐵 / 3 ) ) ) = ( ( ( 𝐵 · 𝐶 ) / 3 ) − ( ( 𝐵 ↑ 3 ) / 9 ) ) ) |
| 235 |
219 220 234
|
3eqtrd |
⊢ ( 𝜑 → ( - ( 𝑀 / 3 ) · ( 𝐵 / 3 ) ) = ( ( ( 𝐵 · 𝐶 ) / 3 ) − ( ( 𝐵 ↑ 3 ) / 9 ) ) ) |
| 236 |
10
|
oveq1d |
⊢ ( 𝜑 → ( 𝑁 / ; 2 7 ) = ( ( ( ( 2 · ( 𝐵 ↑ 3 ) ) − ( 9 · ( 𝐵 · 𝐶 ) ) ) + ( ; 2 7 · 𝐷 ) ) / ; 2 7 ) ) |
| 237 |
33 39 42 44
|
divdird |
⊢ ( 𝜑 → ( ( ( ( 2 · ( 𝐵 ↑ 3 ) ) − ( 9 · ( 𝐵 · 𝐶 ) ) ) + ( ; 2 7 · 𝐷 ) ) / ; 2 7 ) = ( ( ( ( 2 · ( 𝐵 ↑ 3 ) ) − ( 9 · ( 𝐵 · 𝐶 ) ) ) / ; 2 7 ) + ( ( ; 2 7 · 𝐷 ) / ; 2 7 ) ) ) |
| 238 |
28 32 42 44
|
divsubdird |
⊢ ( 𝜑 → ( ( ( 2 · ( 𝐵 ↑ 3 ) ) − ( 9 · ( 𝐵 · 𝐶 ) ) ) / ; 2 7 ) = ( ( ( 2 · ( 𝐵 ↑ 3 ) ) / ; 2 7 ) − ( ( 9 · ( 𝐵 · 𝐶 ) ) / ; 2 7 ) ) ) |
| 239 |
|
9t3e27 |
⊢ ( 9 · 3 ) = ; 2 7 |
| 240 |
239
|
oveq2i |
⊢ ( ( 9 · ( 𝐵 · 𝐶 ) ) / ( 9 · 3 ) ) = ( ( 9 · ( 𝐵 · 𝐶 ) ) / ; 2 7 ) |
| 241 |
30 18 98 20 101
|
divcan5d |
⊢ ( 𝜑 → ( ( 9 · ( 𝐵 · 𝐶 ) ) / ( 9 · 3 ) ) = ( ( 𝐵 · 𝐶 ) / 3 ) ) |
| 242 |
240 241
|
eqtr3id |
⊢ ( 𝜑 → ( ( 9 · ( 𝐵 · 𝐶 ) ) / ; 2 7 ) = ( ( 𝐵 · 𝐶 ) / 3 ) ) |
| 243 |
242
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 2 · ( 𝐵 ↑ 3 ) ) / ; 2 7 ) − ( ( 9 · ( 𝐵 · 𝐶 ) ) / ; 2 7 ) ) = ( ( ( 2 · ( 𝐵 ↑ 3 ) ) / ; 2 7 ) − ( ( 𝐵 · 𝐶 ) / 3 ) ) ) |
| 244 |
238 243
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 2 · ( 𝐵 ↑ 3 ) ) − ( 9 · ( 𝐵 · 𝐶 ) ) ) / ; 2 7 ) = ( ( ( 2 · ( 𝐵 ↑ 3 ) ) / ; 2 7 ) − ( ( 𝐵 · 𝐶 ) / 3 ) ) ) |
| 245 |
3 42 44
|
divcan3d |
⊢ ( 𝜑 → ( ( ; 2 7 · 𝐷 ) / ; 2 7 ) = 𝐷 ) |
| 246 |
244 245
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( 2 · ( 𝐵 ↑ 3 ) ) − ( 9 · ( 𝐵 · 𝐶 ) ) ) / ; 2 7 ) + ( ( ; 2 7 · 𝐷 ) / ; 2 7 ) ) = ( ( ( ( 2 · ( 𝐵 ↑ 3 ) ) / ; 2 7 ) − ( ( 𝐵 · 𝐶 ) / 3 ) ) + 𝐷 ) ) |
| 247 |
236 237 246
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑁 / ; 2 7 ) = ( ( ( ( 2 · ( 𝐵 ↑ 3 ) ) / ; 2 7 ) − ( ( 𝐵 · 𝐶 ) / 3 ) ) + 𝐷 ) ) |
| 248 |
235 247
|
oveq12d |
⊢ ( 𝜑 → ( ( - ( 𝑀 / 3 ) · ( 𝐵 / 3 ) ) + ( 𝑁 / ; 2 7 ) ) = ( ( ( ( 𝐵 · 𝐶 ) / 3 ) − ( ( 𝐵 ↑ 3 ) / 9 ) ) + ( ( ( ( 2 · ( 𝐵 ↑ 3 ) ) / ; 2 7 ) − ( ( 𝐵 · 𝐶 ) / 3 ) ) + 𝐷 ) ) ) |
| 249 |
26 98 101
|
divcld |
⊢ ( 𝜑 → ( ( 𝐵 ↑ 3 ) / 9 ) ∈ ℂ ) |
| 250 |
28 42 44
|
divcld |
⊢ ( 𝜑 → ( ( 2 · ( 𝐵 ↑ 3 ) ) / ; 2 7 ) ∈ ℂ ) |
| 251 |
249 250
|
negsubdi2d |
⊢ ( 𝜑 → - ( ( ( 𝐵 ↑ 3 ) / 9 ) − ( ( 2 · ( 𝐵 ↑ 3 ) ) / ; 2 7 ) ) = ( ( ( 2 · ( 𝐵 ↑ 3 ) ) / ; 2 7 ) − ( ( 𝐵 ↑ 3 ) / 9 ) ) ) |
| 252 |
1 18 20 56
|
expdivd |
⊢ ( 𝜑 → ( ( 𝐵 / 3 ) ↑ 3 ) = ( ( 𝐵 ↑ 3 ) / ( 3 ↑ 3 ) ) ) |
| 253 |
58
|
oveq2i |
⊢ ( ( 𝐵 ↑ 3 ) / ( 3 ↑ 3 ) ) = ( ( 𝐵 ↑ 3 ) / ; 2 7 ) |
| 254 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 255 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
| 256 |
13 23 254 255
|
subaddrii |
⊢ ( 3 − 2 ) = 1 |
| 257 |
256
|
oveq1i |
⊢ ( ( 3 − 2 ) · ( 𝐵 ↑ 3 ) ) = ( 1 · ( 𝐵 ↑ 3 ) ) |
| 258 |
26
|
mullidd |
⊢ ( 𝜑 → ( 1 · ( 𝐵 ↑ 3 ) ) = ( 𝐵 ↑ 3 ) ) |
| 259 |
257 258
|
eqtrid |
⊢ ( 𝜑 → ( ( 3 − 2 ) · ( 𝐵 ↑ 3 ) ) = ( 𝐵 ↑ 3 ) ) |
| 260 |
18 62 26
|
subdird |
⊢ ( 𝜑 → ( ( 3 − 2 ) · ( 𝐵 ↑ 3 ) ) = ( ( 3 · ( 𝐵 ↑ 3 ) ) − ( 2 · ( 𝐵 ↑ 3 ) ) ) ) |
| 261 |
259 260
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐵 ↑ 3 ) = ( ( 3 · ( 𝐵 ↑ 3 ) ) − ( 2 · ( 𝐵 ↑ 3 ) ) ) ) |
| 262 |
261
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐵 ↑ 3 ) / ; 2 7 ) = ( ( ( 3 · ( 𝐵 ↑ 3 ) ) − ( 2 · ( 𝐵 ↑ 3 ) ) ) / ; 2 7 ) ) |
| 263 |
|
mulcl |
⊢ ( ( 3 ∈ ℂ ∧ ( 𝐵 ↑ 3 ) ∈ ℂ ) → ( 3 · ( 𝐵 ↑ 3 ) ) ∈ ℂ ) |
| 264 |
13 26 263
|
sylancr |
⊢ ( 𝜑 → ( 3 · ( 𝐵 ↑ 3 ) ) ∈ ℂ ) |
| 265 |
264 28 42 44
|
divsubdird |
⊢ ( 𝜑 → ( ( ( 3 · ( 𝐵 ↑ 3 ) ) − ( 2 · ( 𝐵 ↑ 3 ) ) ) / ; 2 7 ) = ( ( ( 3 · ( 𝐵 ↑ 3 ) ) / ; 2 7 ) − ( ( 2 · ( 𝐵 ↑ 3 ) ) / ; 2 7 ) ) ) |
| 266 |
262 265
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐵 ↑ 3 ) / ; 2 7 ) = ( ( ( 3 · ( 𝐵 ↑ 3 ) ) / ; 2 7 ) − ( ( 2 · ( 𝐵 ↑ 3 ) ) / ; 2 7 ) ) ) |
| 267 |
253 266
|
eqtrid |
⊢ ( 𝜑 → ( ( 𝐵 ↑ 3 ) / ( 3 ↑ 3 ) ) = ( ( ( 3 · ( 𝐵 ↑ 3 ) ) / ; 2 7 ) − ( ( 2 · ( 𝐵 ↑ 3 ) ) / ; 2 7 ) ) ) |
| 268 |
29 13 239
|
mulcomli |
⊢ ( 3 · 9 ) = ; 2 7 |
| 269 |
268
|
oveq2i |
⊢ ( ( 3 · ( 𝐵 ↑ 3 ) ) / ( 3 · 9 ) ) = ( ( 3 · ( 𝐵 ↑ 3 ) ) / ; 2 7 ) |
| 270 |
26 98 18 101 20
|
divcan5d |
⊢ ( 𝜑 → ( ( 3 · ( 𝐵 ↑ 3 ) ) / ( 3 · 9 ) ) = ( ( 𝐵 ↑ 3 ) / 9 ) ) |
| 271 |
269 270
|
eqtr3id |
⊢ ( 𝜑 → ( ( 3 · ( 𝐵 ↑ 3 ) ) / ; 2 7 ) = ( ( 𝐵 ↑ 3 ) / 9 ) ) |
| 272 |
271
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 3 · ( 𝐵 ↑ 3 ) ) / ; 2 7 ) − ( ( 2 · ( 𝐵 ↑ 3 ) ) / ; 2 7 ) ) = ( ( ( 𝐵 ↑ 3 ) / 9 ) − ( ( 2 · ( 𝐵 ↑ 3 ) ) / ; 2 7 ) ) ) |
| 273 |
252 267 272
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐵 / 3 ) ↑ 3 ) = ( ( ( 𝐵 ↑ 3 ) / 9 ) − ( ( 2 · ( 𝐵 ↑ 3 ) ) / ; 2 7 ) ) ) |
| 274 |
273
|
negeqd |
⊢ ( 𝜑 → - ( ( 𝐵 / 3 ) ↑ 3 ) = - ( ( ( 𝐵 ↑ 3 ) / 9 ) − ( ( 2 · ( 𝐵 ↑ 3 ) ) / ; 2 7 ) ) ) |
| 275 |
30 18 20
|
divcld |
⊢ ( 𝜑 → ( ( 𝐵 · 𝐶 ) / 3 ) ∈ ℂ ) |
| 276 |
275 249 250
|
npncan3d |
⊢ ( 𝜑 → ( ( ( ( 𝐵 · 𝐶 ) / 3 ) − ( ( 𝐵 ↑ 3 ) / 9 ) ) + ( ( ( 2 · ( 𝐵 ↑ 3 ) ) / ; 2 7 ) − ( ( 𝐵 · 𝐶 ) / 3 ) ) ) = ( ( ( 2 · ( 𝐵 ↑ 3 ) ) / ; 2 7 ) − ( ( 𝐵 ↑ 3 ) / 9 ) ) ) |
| 277 |
251 274 276
|
3eqtr4d |
⊢ ( 𝜑 → - ( ( 𝐵 / 3 ) ↑ 3 ) = ( ( ( ( 𝐵 · 𝐶 ) / 3 ) − ( ( 𝐵 ↑ 3 ) / 9 ) ) + ( ( ( 2 · ( 𝐵 ↑ 3 ) ) / ; 2 7 ) − ( ( 𝐵 · 𝐶 ) / 3 ) ) ) ) |
| 278 |
277
|
oveq1d |
⊢ ( 𝜑 → ( - ( ( 𝐵 / 3 ) ↑ 3 ) + 𝐷 ) = ( ( ( ( ( 𝐵 · 𝐶 ) / 3 ) − ( ( 𝐵 ↑ 3 ) / 9 ) ) + ( ( ( 2 · ( 𝐵 ↑ 3 ) ) / ; 2 7 ) − ( ( 𝐵 · 𝐶 ) / 3 ) ) ) + 𝐷 ) ) |
| 279 |
184
|
negcld |
⊢ ( 𝜑 → - ( ( 𝐵 / 3 ) ↑ 3 ) ∈ ℂ ) |
| 280 |
279 3
|
addcomd |
⊢ ( 𝜑 → ( - ( ( 𝐵 / 3 ) ↑ 3 ) + 𝐷 ) = ( 𝐷 + - ( ( 𝐵 / 3 ) ↑ 3 ) ) ) |
| 281 |
235 192
|
eqeltrrd |
⊢ ( 𝜑 → ( ( ( 𝐵 · 𝐶 ) / 3 ) − ( ( 𝐵 ↑ 3 ) / 9 ) ) ∈ ℂ ) |
| 282 |
250 275
|
subcld |
⊢ ( 𝜑 → ( ( ( 2 · ( 𝐵 ↑ 3 ) ) / ; 2 7 ) − ( ( 𝐵 · 𝐶 ) / 3 ) ) ∈ ℂ ) |
| 283 |
281 282 3
|
addassd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐵 · 𝐶 ) / 3 ) − ( ( 𝐵 ↑ 3 ) / 9 ) ) + ( ( ( 2 · ( 𝐵 ↑ 3 ) ) / ; 2 7 ) − ( ( 𝐵 · 𝐶 ) / 3 ) ) ) + 𝐷 ) = ( ( ( ( 𝐵 · 𝐶 ) / 3 ) − ( ( 𝐵 ↑ 3 ) / 9 ) ) + ( ( ( ( 2 · ( 𝐵 ↑ 3 ) ) / ; 2 7 ) − ( ( 𝐵 · 𝐶 ) / 3 ) ) + 𝐷 ) ) ) |
| 284 |
278 280 283
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐷 + - ( ( 𝐵 / 3 ) ↑ 3 ) ) = ( ( ( ( 𝐵 · 𝐶 ) / 3 ) − ( ( 𝐵 ↑ 3 ) / 9 ) ) + ( ( ( ( 2 · ( 𝐵 ↑ 3 ) ) / ; 2 7 ) − ( ( 𝐵 · 𝐶 ) / 3 ) ) + 𝐷 ) ) ) |
| 285 |
3 184
|
negsubd |
⊢ ( 𝜑 → ( 𝐷 + - ( ( 𝐵 / 3 ) ↑ 3 ) ) = ( 𝐷 − ( ( 𝐵 / 3 ) ↑ 3 ) ) ) |
| 286 |
248 284 285
|
3eqtr2d |
⊢ ( 𝜑 → ( ( - ( 𝑀 / 3 ) · ( 𝐵 / 3 ) ) + ( 𝑁 / ; 2 7 ) ) = ( 𝐷 − ( ( 𝐵 / 3 ) ↑ 3 ) ) ) |
| 287 |
218 286
|
oveq12d |
⊢ ( 𝜑 → ( ( - ( 𝑀 / 3 ) · 𝑋 ) + ( ( - ( 𝑀 / 3 ) · ( 𝐵 / 3 ) ) + ( 𝑁 / ; 2 7 ) ) ) = ( ( ( 𝐶 · 𝑋 ) − ( 3 · ( 𝑋 · ( ( 𝐵 / 3 ) ↑ 2 ) ) ) ) + ( 𝐷 − ( ( 𝐵 / 3 ) ↑ 3 ) ) ) ) |
| 288 |
190 193 287
|
3eqtrd |
⊢ ( 𝜑 → ( ( - ( 𝑀 / 3 ) · ( 𝑋 + ( 𝐵 / 3 ) ) ) + ( 𝑁 / ; 2 7 ) ) = ( ( ( 𝐶 · 𝑋 ) − ( 3 · ( 𝑋 · ( ( 𝐵 / 3 ) ↑ 2 ) ) ) ) + ( 𝐷 − ( ( 𝐵 / 3 ) ↑ 3 ) ) ) ) |
| 289 |
2 4
|
mulcld |
⊢ ( 𝜑 → ( 𝐶 · 𝑋 ) ∈ ℂ ) |
| 290 |
289 3 182 184
|
addsub4d |
⊢ ( 𝜑 → ( ( ( 𝐶 · 𝑋 ) + 𝐷 ) − ( ( 3 · ( 𝑋 · ( ( 𝐵 / 3 ) ↑ 2 ) ) ) + ( ( 𝐵 / 3 ) ↑ 3 ) ) ) = ( ( ( 𝐶 · 𝑋 ) − ( 3 · ( 𝑋 · ( ( 𝐵 / 3 ) ↑ 2 ) ) ) ) + ( 𝐷 − ( ( 𝐵 / 3 ) ↑ 3 ) ) ) ) |
| 291 |
288 290
|
eqtr4d |
⊢ ( 𝜑 → ( ( - ( 𝑀 / 3 ) · ( 𝑋 + ( 𝐵 / 3 ) ) ) + ( 𝑁 / ; 2 7 ) ) = ( ( ( 𝐶 · 𝑋 ) + 𝐷 ) − ( ( 3 · ( 𝑋 · ( ( 𝐵 / 3 ) ↑ 2 ) ) ) + ( ( 𝐵 / 3 ) ↑ 3 ) ) ) ) |
| 292 |
291
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 3 · ( 𝑋 · ( ( 𝐵 / 3 ) ↑ 2 ) ) ) + ( ( 𝐵 / 3 ) ↑ 3 ) ) + ( ( - ( 𝑀 / 3 ) · ( 𝑋 + ( 𝐵 / 3 ) ) ) + ( 𝑁 / ; 2 7 ) ) ) = ( ( ( 3 · ( 𝑋 · ( ( 𝐵 / 3 ) ↑ 2 ) ) ) + ( ( 𝐵 / 3 ) ↑ 3 ) ) + ( ( ( 𝐶 · 𝑋 ) + 𝐷 ) − ( ( 3 · ( 𝑋 · ( ( 𝐵 / 3 ) ↑ 2 ) ) ) + ( ( 𝐵 / 3 ) ↑ 3 ) ) ) ) ) |
| 293 |
289 3
|
addcld |
⊢ ( 𝜑 → ( ( 𝐶 · 𝑋 ) + 𝐷 ) ∈ ℂ ) |
| 294 |
185 293
|
pncan3d |
⊢ ( 𝜑 → ( ( ( 3 · ( 𝑋 · ( ( 𝐵 / 3 ) ↑ 2 ) ) ) + ( ( 𝐵 / 3 ) ↑ 3 ) ) + ( ( ( 𝐶 · 𝑋 ) + 𝐷 ) − ( ( 3 · ( 𝑋 · ( ( 𝐵 / 3 ) ↑ 2 ) ) ) + ( ( 𝐵 / 3 ) ↑ 3 ) ) ) ) = ( ( 𝐶 · 𝑋 ) + 𝐷 ) ) |
| 295 |
292 294
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 3 · ( 𝑋 · ( ( 𝐵 / 3 ) ↑ 2 ) ) ) + ( ( 𝐵 / 3 ) ↑ 3 ) ) + ( ( - ( 𝑀 / 3 ) · ( 𝑋 + ( 𝐵 / 3 ) ) ) + ( 𝑁 / ; 2 7 ) ) ) = ( ( 𝐶 · 𝑋 ) + 𝐷 ) ) |
| 296 |
295
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝑋 ↑ 3 ) + ( 𝐵 · ( 𝑋 ↑ 2 ) ) ) + ( ( ( 3 · ( 𝑋 · ( ( 𝐵 / 3 ) ↑ 2 ) ) ) + ( ( 𝐵 / 3 ) ↑ 3 ) ) + ( ( - ( 𝑀 / 3 ) · ( 𝑋 + ( 𝐵 / 3 ) ) ) + ( 𝑁 / ; 2 7 ) ) ) ) = ( ( ( 𝑋 ↑ 3 ) + ( 𝐵 · ( 𝑋 ↑ 2 ) ) ) + ( ( 𝐶 · 𝑋 ) + 𝐷 ) ) ) |
| 297 |
175 188 296
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑋 + ( 𝐵 / 3 ) ) ↑ 3 ) + ( ( - ( 𝑀 / 3 ) · ( 𝑋 + ( 𝐵 / 3 ) ) ) + ( 𝑁 / ; 2 7 ) ) ) = ( ( ( 𝑋 ↑ 3 ) + ( 𝐵 · ( 𝑋 ↑ 2 ) ) ) + ( ( 𝐶 · 𝑋 ) + 𝐷 ) ) ) |
| 298 |
297
|
eqeq1d |
⊢ ( 𝜑 → ( ( ( ( 𝑋 + ( 𝐵 / 3 ) ) ↑ 3 ) + ( ( - ( 𝑀 / 3 ) · ( 𝑋 + ( 𝐵 / 3 ) ) ) + ( 𝑁 / ; 2 7 ) ) ) = 0 ↔ ( ( ( 𝑋 ↑ 3 ) + ( 𝐵 · ( 𝑋 ↑ 2 ) ) ) + ( ( 𝐶 · 𝑋 ) + 𝐷 ) ) = 0 ) ) |
| 299 |
|
oveq1 |
⊢ ( 𝑟 = 0 → ( 𝑟 ↑ 3 ) = ( 0 ↑ 3 ) ) |
| 300 |
|
0exp |
⊢ ( 3 ∈ ℕ → ( 0 ↑ 3 ) = 0 ) |
| 301 |
50 300
|
ax-mp |
⊢ ( 0 ↑ 3 ) = 0 |
| 302 |
299 301
|
eqtrdi |
⊢ ( 𝑟 = 0 → ( 𝑟 ↑ 3 ) = 0 ) |
| 303 |
|
0ne1 |
⊢ 0 ≠ 1 |
| 304 |
303
|
a1i |
⊢ ( 𝑟 = 0 → 0 ≠ 1 ) |
| 305 |
302 304
|
eqnetrd |
⊢ ( 𝑟 = 0 → ( 𝑟 ↑ 3 ) ≠ 1 ) |
| 306 |
305
|
necon2i |
⊢ ( ( 𝑟 ↑ 3 ) = 1 → 𝑟 ≠ 0 ) |
| 307 |
|
eqcom |
⊢ ( 𝑋 = - ( ( ( 𝐵 + ( 𝑟 · 𝑇 ) ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / 3 ) ↔ - ( ( ( 𝐵 + ( 𝑟 · 𝑇 ) ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / 3 ) = 𝑋 ) |
| 308 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → 𝐵 ∈ ℂ ) |
| 309 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → 𝑟 ∈ ℂ ) |
| 310 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → 𝑇 ∈ ℂ ) |
| 311 |
309 310
|
mulcld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → ( 𝑟 · 𝑇 ) ∈ ℂ ) |
| 312 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → 𝑀 ∈ ℂ ) |
| 313 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → 𝑟 ≠ 0 ) |
| 314 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → 𝑇 ≠ 0 ) |
| 315 |
309 310 313 314
|
mulne0d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → ( 𝑟 · 𝑇 ) ≠ 0 ) |
| 316 |
312 311 315
|
divcld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → ( 𝑀 / ( 𝑟 · 𝑇 ) ) ∈ ℂ ) |
| 317 |
311 316
|
addcld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → ( ( 𝑟 · 𝑇 ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ∈ ℂ ) |
| 318 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → 3 ∈ ℂ ) |
| 319 |
19
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → 3 ≠ 0 ) |
| 320 |
308 317 318 319
|
divdird |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → ( ( 𝐵 + ( ( 𝑟 · 𝑇 ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) / 3 ) = ( ( 𝐵 / 3 ) + ( ( ( 𝑟 · 𝑇 ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / 3 ) ) ) |
| 321 |
308 311 316
|
addassd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → ( ( 𝐵 + ( 𝑟 · 𝑇 ) ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) = ( 𝐵 + ( ( 𝑟 · 𝑇 ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) |
| 322 |
321
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → ( ( ( 𝐵 + ( 𝑟 · 𝑇 ) ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / 3 ) = ( ( 𝐵 + ( ( 𝑟 · 𝑇 ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) / 3 ) ) |
| 323 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → ( 𝐵 / 3 ) ∈ ℂ ) |
| 324 |
317 318 319
|
divcld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → ( ( ( 𝑟 · 𝑇 ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / 3 ) ∈ ℂ ) |
| 325 |
323 324
|
subnegd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → ( ( 𝐵 / 3 ) − - ( ( ( 𝑟 · 𝑇 ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / 3 ) ) = ( ( 𝐵 / 3 ) + ( ( ( 𝑟 · 𝑇 ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / 3 ) ) ) |
| 326 |
320 322 325
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → ( ( ( 𝐵 + ( 𝑟 · 𝑇 ) ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / 3 ) = ( ( 𝐵 / 3 ) − - ( ( ( 𝑟 · 𝑇 ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / 3 ) ) ) |
| 327 |
326
|
negeqd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → - ( ( ( 𝐵 + ( 𝑟 · 𝑇 ) ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / 3 ) = - ( ( 𝐵 / 3 ) − - ( ( ( 𝑟 · 𝑇 ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / 3 ) ) ) |
| 328 |
324
|
negcld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → - ( ( ( 𝑟 · 𝑇 ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / 3 ) ∈ ℂ ) |
| 329 |
323 328
|
negsubdi2d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → - ( ( 𝐵 / 3 ) − - ( ( ( 𝑟 · 𝑇 ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / 3 ) ) = ( - ( ( ( 𝑟 · 𝑇 ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / 3 ) − ( 𝐵 / 3 ) ) ) |
| 330 |
327 329
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → - ( ( ( 𝐵 + ( 𝑟 · 𝑇 ) ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / 3 ) = ( - ( ( ( 𝑟 · 𝑇 ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / 3 ) − ( 𝐵 / 3 ) ) ) |
| 331 |
330
|
eqeq1d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → ( - ( ( ( 𝐵 + ( 𝑟 · 𝑇 ) ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / 3 ) = 𝑋 ↔ ( - ( ( ( 𝑟 · 𝑇 ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / 3 ) − ( 𝐵 / 3 ) ) = 𝑋 ) ) |
| 332 |
307 331
|
bitrid |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → ( 𝑋 = - ( ( ( 𝐵 + ( 𝑟 · 𝑇 ) ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / 3 ) ↔ ( - ( ( ( 𝑟 · 𝑇 ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / 3 ) − ( 𝐵 / 3 ) ) = 𝑋 ) ) |
| 333 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → 𝑋 ∈ ℂ ) |
| 334 |
328 323 333
|
subadd2d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → ( ( - ( ( ( 𝑟 · 𝑇 ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / 3 ) − ( 𝐵 / 3 ) ) = 𝑋 ↔ ( 𝑋 + ( 𝐵 / 3 ) ) = - ( ( ( 𝑟 · 𝑇 ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / 3 ) ) ) |
| 335 |
311 316 318 319
|
divdird |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → ( ( ( 𝑟 · 𝑇 ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / 3 ) = ( ( ( 𝑟 · 𝑇 ) / 3 ) + ( ( 𝑀 / ( 𝑟 · 𝑇 ) ) / 3 ) ) ) |
| 336 |
335
|
negeqd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → - ( ( ( 𝑟 · 𝑇 ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / 3 ) = - ( ( ( 𝑟 · 𝑇 ) / 3 ) + ( ( 𝑀 / ( 𝑟 · 𝑇 ) ) / 3 ) ) ) |
| 337 |
311 318 319
|
divcld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → ( ( 𝑟 · 𝑇 ) / 3 ) ∈ ℂ ) |
| 338 |
316 318 319
|
divcld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → ( ( 𝑀 / ( 𝑟 · 𝑇 ) ) / 3 ) ∈ ℂ ) |
| 339 |
337 338
|
negdi2d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → - ( ( ( 𝑟 · 𝑇 ) / 3 ) + ( ( 𝑀 / ( 𝑟 · 𝑇 ) ) / 3 ) ) = ( - ( ( 𝑟 · 𝑇 ) / 3 ) − ( ( 𝑀 / ( 𝑟 · 𝑇 ) ) / 3 ) ) ) |
| 340 |
309 310 318 319
|
divassd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → ( ( 𝑟 · 𝑇 ) / 3 ) = ( 𝑟 · ( 𝑇 / 3 ) ) ) |
| 341 |
340
|
negeqd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → - ( ( 𝑟 · 𝑇 ) / 3 ) = - ( 𝑟 · ( 𝑇 / 3 ) ) ) |
| 342 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → ( 𝑇 / 3 ) ∈ ℂ ) |
| 343 |
309 342
|
mulneg2d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → ( 𝑟 · - ( 𝑇 / 3 ) ) = - ( 𝑟 · ( 𝑇 / 3 ) ) ) |
| 344 |
341 343
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → - ( ( 𝑟 · 𝑇 ) / 3 ) = ( 𝑟 · - ( 𝑇 / 3 ) ) ) |
| 345 |
312 311 318 315 319
|
divdiv32d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → ( ( 𝑀 / ( 𝑟 · 𝑇 ) ) / 3 ) = ( ( 𝑀 / 3 ) / ( 𝑟 · 𝑇 ) ) ) |
| 346 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → ( 𝑀 / 3 ) ∈ ℂ ) |
| 347 |
346 311 318 315 319
|
divcan7d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → ( ( ( 𝑀 / 3 ) / 3 ) / ( ( 𝑟 · 𝑇 ) / 3 ) ) = ( ( 𝑀 / 3 ) / ( 𝑟 · 𝑇 ) ) ) |
| 348 |
156
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑀 / 3 ) / 3 ) / ( ( 𝑟 · 𝑇 ) / 3 ) ) = ( ( 𝑀 / 9 ) / ( ( 𝑟 · 𝑇 ) / 3 ) ) ) |
| 349 |
348
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → ( ( ( 𝑀 / 3 ) / 3 ) / ( ( 𝑟 · 𝑇 ) / 3 ) ) = ( ( 𝑀 / 9 ) / ( ( 𝑟 · 𝑇 ) / 3 ) ) ) |
| 350 |
345 347 349
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → ( ( 𝑀 / ( 𝑟 · 𝑇 ) ) / 3 ) = ( ( 𝑀 / 9 ) / ( ( 𝑟 · 𝑇 ) / 3 ) ) ) |
| 351 |
121
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → ( 𝑀 / 9 ) ∈ ℂ ) |
| 352 |
311 318 315 319
|
divne0d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → ( ( 𝑟 · 𝑇 ) / 3 ) ≠ 0 ) |
| 353 |
351 337 352
|
div2negd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → ( - ( 𝑀 / 9 ) / - ( ( 𝑟 · 𝑇 ) / 3 ) ) = ( ( 𝑀 / 9 ) / ( ( 𝑟 · 𝑇 ) / 3 ) ) ) |
| 354 |
344
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → ( - ( 𝑀 / 9 ) / - ( ( 𝑟 · 𝑇 ) / 3 ) ) = ( - ( 𝑀 / 9 ) / ( 𝑟 · - ( 𝑇 / 3 ) ) ) ) |
| 355 |
350 353 354
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → ( ( 𝑀 / ( 𝑟 · 𝑇 ) ) / 3 ) = ( - ( 𝑀 / 9 ) / ( 𝑟 · - ( 𝑇 / 3 ) ) ) ) |
| 356 |
344 355
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → ( - ( ( 𝑟 · 𝑇 ) / 3 ) − ( ( 𝑀 / ( 𝑟 · 𝑇 ) ) / 3 ) ) = ( ( 𝑟 · - ( 𝑇 / 3 ) ) − ( - ( 𝑀 / 9 ) / ( 𝑟 · - ( 𝑇 / 3 ) ) ) ) ) |
| 357 |
336 339 356
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → - ( ( ( 𝑟 · 𝑇 ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / 3 ) = ( ( 𝑟 · - ( 𝑇 / 3 ) ) − ( - ( 𝑀 / 9 ) / ( 𝑟 · - ( 𝑇 / 3 ) ) ) ) ) |
| 358 |
357
|
eqeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → ( ( 𝑋 + ( 𝐵 / 3 ) ) = - ( ( ( 𝑟 · 𝑇 ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / 3 ) ↔ ( 𝑋 + ( 𝐵 / 3 ) ) = ( ( 𝑟 · - ( 𝑇 / 3 ) ) − ( - ( 𝑀 / 9 ) / ( 𝑟 · - ( 𝑇 / 3 ) ) ) ) ) ) |
| 359 |
332 334 358
|
3bitrrd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℂ ∧ 𝑟 ≠ 0 ) ) → ( ( 𝑋 + ( 𝐵 / 3 ) ) = ( ( 𝑟 · - ( 𝑇 / 3 ) ) − ( - ( 𝑀 / 9 ) / ( 𝑟 · - ( 𝑇 / 3 ) ) ) ) ↔ 𝑋 = - ( ( ( 𝐵 + ( 𝑟 · 𝑇 ) ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / 3 ) ) ) |
| 360 |
359
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ 𝑟 ≠ 0 ) → ( ( 𝑋 + ( 𝐵 / 3 ) ) = ( ( 𝑟 · - ( 𝑇 / 3 ) ) − ( - ( 𝑀 / 9 ) / ( 𝑟 · - ( 𝑇 / 3 ) ) ) ) ↔ 𝑋 = - ( ( ( 𝐵 + ( 𝑟 · 𝑇 ) ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / 3 ) ) ) |
| 361 |
306 360
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( 𝑟 ↑ 3 ) = 1 ) → ( ( 𝑋 + ( 𝐵 / 3 ) ) = ( ( 𝑟 · - ( 𝑇 / 3 ) ) − ( - ( 𝑀 / 9 ) / ( 𝑟 · - ( 𝑇 / 3 ) ) ) ) ↔ 𝑋 = - ( ( ( 𝐵 + ( 𝑟 · 𝑇 ) ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / 3 ) ) ) |
| 362 |
361
|
pm5.32da |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) → ( ( ( 𝑟 ↑ 3 ) = 1 ∧ ( 𝑋 + ( 𝐵 / 3 ) ) = ( ( 𝑟 · - ( 𝑇 / 3 ) ) − ( - ( 𝑀 / 9 ) / ( 𝑟 · - ( 𝑇 / 3 ) ) ) ) ) ↔ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = - ( ( ( 𝐵 + ( 𝑟 · 𝑇 ) ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / 3 ) ) ) ) |
| 363 |
362
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ ℂ ( ( 𝑟 ↑ 3 ) = 1 ∧ ( 𝑋 + ( 𝐵 / 3 ) ) = ( ( 𝑟 · - ( 𝑇 / 3 ) ) − ( - ( 𝑀 / 9 ) / ( 𝑟 · - ( 𝑇 / 3 ) ) ) ) ) ↔ ∃ 𝑟 ∈ ℂ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = - ( ( ( 𝐵 + ( 𝑟 · 𝑇 ) ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / 3 ) ) ) ) |
| 364 |
163 298 363
|
3bitr3d |
⊢ ( 𝜑 → ( ( ( ( 𝑋 ↑ 3 ) + ( 𝐵 · ( 𝑋 ↑ 2 ) ) ) + ( ( 𝐶 · 𝑋 ) + 𝐷 ) ) = 0 ↔ ∃ 𝑟 ∈ ℂ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = - ( ( ( 𝐵 + ( 𝑟 · 𝑇 ) ) + ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) / 3 ) ) ) ) |