| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dcubic.c |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
| 2 |
|
dcubic.d |
⊢ ( 𝜑 → 𝑄 ∈ ℂ ) |
| 3 |
|
dcubic.x |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 4 |
|
dcubic.t |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
| 5 |
|
dcubic.3 |
⊢ ( 𝜑 → ( 𝑇 ↑ 3 ) = ( 𝐺 − 𝑁 ) ) |
| 6 |
|
dcubic.g |
⊢ ( 𝜑 → 𝐺 ∈ ℂ ) |
| 7 |
|
dcubic.2 |
⊢ ( 𝜑 → ( 𝐺 ↑ 2 ) = ( ( 𝑁 ↑ 2 ) + ( 𝑀 ↑ 3 ) ) ) |
| 8 |
|
dcubic.m |
⊢ ( 𝜑 → 𝑀 = ( 𝑃 / 3 ) ) |
| 9 |
|
dcubic.n |
⊢ ( 𝜑 → 𝑁 = ( 𝑄 / 2 ) ) |
| 10 |
|
dcubic.0 |
⊢ ( 𝜑 → 𝑇 ≠ 0 ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) → 𝑇 ≠ 0 ) |
| 12 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) → 𝑇 ∈ ℂ ) |
| 13 |
|
3z |
⊢ 3 ∈ ℤ |
| 14 |
|
expne0i |
⊢ ( ( 𝑇 ∈ ℂ ∧ 𝑇 ≠ 0 ∧ 3 ∈ ℤ ) → ( 𝑇 ↑ 3 ) ≠ 0 ) |
| 15 |
13 14
|
mp3an3 |
⊢ ( ( 𝑇 ∈ ℂ ∧ 𝑇 ≠ 0 ) → ( 𝑇 ↑ 3 ) ≠ 0 ) |
| 16 |
15
|
ex |
⊢ ( 𝑇 ∈ ℂ → ( 𝑇 ≠ 0 → ( 𝑇 ↑ 3 ) ≠ 0 ) ) |
| 17 |
12 16
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) → ( 𝑇 ≠ 0 → ( 𝑇 ↑ 3 ) ≠ 0 ) ) |
| 18 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝑇 ↑ 3 ) = ( 𝐺 − 𝑁 ) ) |
| 19 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → 𝐺 ∈ ℂ ) |
| 20 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝐺 ↑ 2 ) = ( ( 𝑁 ↑ 2 ) + ( 𝑀 ↑ 3 ) ) ) |
| 21 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → 𝑁 = ( 𝑄 / 2 ) ) |
| 22 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → 𝑋 = 0 ) |
| 23 |
22
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝑃 · 𝑋 ) = ( 𝑃 · 0 ) ) |
| 24 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → 𝑃 ∈ ℂ ) |
| 25 |
24
|
mul01d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝑃 · 0 ) = 0 ) |
| 26 |
23 25
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝑃 · 𝑋 ) = 0 ) |
| 27 |
26
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( ( 𝑃 · 𝑋 ) + 𝑄 ) = ( 0 + 𝑄 ) ) |
| 28 |
22
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝑋 ↑ 3 ) = ( 0 ↑ 3 ) ) |
| 29 |
|
3nn |
⊢ 3 ∈ ℕ |
| 30 |
|
0exp |
⊢ ( 3 ∈ ℕ → ( 0 ↑ 3 ) = 0 ) |
| 31 |
29 30
|
ax-mp |
⊢ ( 0 ↑ 3 ) = 0 |
| 32 |
28 31
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝑋 ↑ 3 ) = 0 ) |
| 33 |
32
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = ( 0 + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) ) |
| 34 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) |
| 35 |
|
0cnd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → 0 ∈ ℂ ) |
| 36 |
26 35
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝑃 · 𝑋 ) ∈ ℂ ) |
| 37 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → 𝑄 ∈ ℂ ) |
| 38 |
36 37
|
addcld |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( ( 𝑃 · 𝑋 ) + 𝑄 ) ∈ ℂ ) |
| 39 |
38
|
addlidd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 0 + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) |
| 40 |
33 34 39
|
3eqtr3rd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( ( 𝑃 · 𝑋 ) + 𝑄 ) = 0 ) |
| 41 |
37
|
addlidd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 0 + 𝑄 ) = 𝑄 ) |
| 42 |
27 40 41
|
3eqtr3rd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → 𝑄 = 0 ) |
| 43 |
42
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝑄 / 2 ) = ( 0 / 2 ) ) |
| 44 |
|
2cn |
⊢ 2 ∈ ℂ |
| 45 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 46 |
44 45
|
div0i |
⊢ ( 0 / 2 ) = 0 |
| 47 |
43 46
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝑄 / 2 ) = 0 ) |
| 48 |
21 47
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → 𝑁 = 0 ) |
| 49 |
48
|
sq0id |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝑁 ↑ 2 ) = 0 ) |
| 50 |
|
3cn |
⊢ 3 ∈ ℂ |
| 51 |
50
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℂ ) |
| 52 |
|
3ne0 |
⊢ 3 ≠ 0 |
| 53 |
52
|
a1i |
⊢ ( 𝜑 → 3 ≠ 0 ) |
| 54 |
1 51 53
|
divcld |
⊢ ( 𝜑 → ( 𝑃 / 3 ) ∈ ℂ ) |
| 55 |
8 54
|
eqeltrd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 56 |
55
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → 𝑀 ∈ ℂ ) |
| 57 |
|
4cn |
⊢ 4 ∈ ℂ |
| 58 |
57
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → 4 ∈ ℂ ) |
| 59 |
|
4ne0 |
⊢ 4 ≠ 0 |
| 60 |
59
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → 4 ≠ 0 ) |
| 61 |
22
|
sq0id |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝑋 ↑ 2 ) = 0 ) |
| 62 |
61
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) = ( 0 + ( 4 · 𝑀 ) ) ) |
| 63 |
3
|
sqcld |
⊢ ( 𝜑 → ( 𝑋 ↑ 2 ) ∈ ℂ ) |
| 64 |
|
mulcl |
⊢ ( ( 4 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( 4 · 𝑀 ) ∈ ℂ ) |
| 65 |
57 55 64
|
sylancr |
⊢ ( 𝜑 → ( 4 · 𝑀 ) ∈ ℂ ) |
| 66 |
63 65
|
addcld |
⊢ ( 𝜑 → ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ∈ ℂ ) |
| 67 |
66
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ∈ ℂ ) |
| 68 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) |
| 69 |
67 68
|
sqr00d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) = 0 ) |
| 70 |
65
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 4 · 𝑀 ) ∈ ℂ ) |
| 71 |
70
|
addlidd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 0 + ( 4 · 𝑀 ) ) = ( 4 · 𝑀 ) ) |
| 72 |
62 69 71
|
3eqtr3rd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 4 · 𝑀 ) = 0 ) |
| 73 |
57
|
mul01i |
⊢ ( 4 · 0 ) = 0 |
| 74 |
72 73
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 4 · 𝑀 ) = ( 4 · 0 ) ) |
| 75 |
56 35 58 60 74
|
mulcanad |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → 𝑀 = 0 ) |
| 76 |
75
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝑀 ↑ 3 ) = ( 0 ↑ 3 ) ) |
| 77 |
76 31
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝑀 ↑ 3 ) = 0 ) |
| 78 |
49 77
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( ( 𝑁 ↑ 2 ) + ( 𝑀 ↑ 3 ) ) = ( 0 + 0 ) ) |
| 79 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
| 80 |
78 79
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( ( 𝑁 ↑ 2 ) + ( 𝑀 ↑ 3 ) ) = 0 ) |
| 81 |
20 80
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝐺 ↑ 2 ) = 0 ) |
| 82 |
19 81
|
sqeq0d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → 𝐺 = 0 ) |
| 83 |
82 48
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝐺 − 𝑁 ) = ( 0 − 0 ) ) |
| 84 |
|
0m0e0 |
⊢ ( 0 − 0 ) = 0 |
| 85 |
83 84
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝐺 − 𝑁 ) = 0 ) |
| 86 |
18 85
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ( 𝑇 ↑ 3 ) = 0 ) |
| 87 |
86
|
ex |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) → ( ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) → ( 𝑇 ↑ 3 ) = 0 ) ) |
| 88 |
87
|
necon3ad |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) → ( ( 𝑇 ↑ 3 ) ≠ 0 → ¬ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) ) |
| 89 |
17 88
|
syld |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) → ( 𝑇 ≠ 0 → ¬ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) ) |
| 90 |
11 89
|
mpd |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) → ¬ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) |
| 91 |
|
oveq12 |
⊢ ( ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ∧ ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ) → ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) + ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) = ( 0 + 0 ) ) |
| 92 |
91 79
|
eqtrdi |
⊢ ( ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ∧ ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ) → ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) + ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) = 0 ) |
| 93 |
|
oveq12 |
⊢ ( ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ∧ ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ) → ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) − ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) = ( 0 − 0 ) ) |
| 94 |
93 84
|
eqtrdi |
⊢ ( ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ∧ ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ) → ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) − ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) = 0 ) |
| 95 |
92 94
|
jca |
⊢ ( ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ∧ ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ) → ( ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) + ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) = 0 ∧ ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) − ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) = 0 ) ) |
| 96 |
66
|
sqrtcld |
⊢ ( 𝜑 → ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ∈ ℂ ) |
| 97 |
|
halfaddsub |
⊢ ( ( 𝑋 ∈ ℂ ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ∈ ℂ ) → ( ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) + ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) = 𝑋 ∧ ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) − ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) = ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) ) |
| 98 |
3 96 97
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) + ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) = 𝑋 ∧ ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) − ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) = ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) ) |
| 99 |
98
|
simpld |
⊢ ( 𝜑 → ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) + ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) = 𝑋 ) |
| 100 |
99
|
eqeq1d |
⊢ ( 𝜑 → ( ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) + ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) = 0 ↔ 𝑋 = 0 ) ) |
| 101 |
98
|
simprd |
⊢ ( 𝜑 → ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) − ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) = ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) |
| 102 |
101
|
eqeq1d |
⊢ ( 𝜑 → ( ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) − ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) = 0 ↔ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) |
| 103 |
100 102
|
anbi12d |
⊢ ( 𝜑 → ( ( ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) + ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) = 0 ∧ ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) − ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) = 0 ) ↔ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) ) |
| 104 |
95 103
|
imbitrid |
⊢ ( 𝜑 → ( ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ∧ ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ) → ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) ) |
| 105 |
104
|
con3d |
⊢ ( 𝜑 → ( ¬ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) → ¬ ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ∧ ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ) ) ) |
| 106 |
|
eldifi |
⊢ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) → 𝑢 ∈ ℂ ) |
| 107 |
106
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → 𝑢 ∈ ℂ ) |
| 108 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → 𝑀 ∈ ℂ ) |
| 109 |
|
eldifsni |
⊢ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) → 𝑢 ≠ 0 ) |
| 110 |
109
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → 𝑢 ≠ 0 ) |
| 111 |
108 107 110
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑀 / 𝑢 ) ∈ ℂ ) |
| 112 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → 𝑋 ∈ ℂ ) |
| 113 |
107 111 112
|
subaddd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑢 − ( 𝑀 / 𝑢 ) ) = 𝑋 ↔ ( ( 𝑀 / 𝑢 ) + 𝑋 ) = 𝑢 ) ) |
| 114 |
|
eqcom |
⊢ ( 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ↔ ( 𝑢 − ( 𝑀 / 𝑢 ) ) = 𝑋 ) |
| 115 |
|
eqcom |
⊢ ( 𝑢 = ( ( 𝑀 / 𝑢 ) + 𝑋 ) ↔ ( ( 𝑀 / 𝑢 ) + 𝑋 ) = 𝑢 ) |
| 116 |
113 114 115
|
3bitr4g |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ↔ 𝑢 = ( ( 𝑀 / 𝑢 ) + 𝑋 ) ) ) |
| 117 |
107
|
sqcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑢 ↑ 2 ) ∈ ℂ ) |
| 118 |
112 107
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑋 · 𝑢 ) ∈ ℂ ) |
| 119 |
118 108
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑋 · 𝑢 ) + 𝑀 ) ∈ ℂ ) |
| 120 |
117 119
|
subeq0ad |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( 𝑢 ↑ 2 ) − ( ( 𝑋 · 𝑢 ) + 𝑀 ) ) = 0 ↔ ( 𝑢 ↑ 2 ) = ( ( 𝑋 · 𝑢 ) + 𝑀 ) ) ) |
| 121 |
107
|
sqvald |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑢 ↑ 2 ) = ( 𝑢 · 𝑢 ) ) |
| 122 |
111 112 107
|
adddird |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( 𝑀 / 𝑢 ) + 𝑋 ) · 𝑢 ) = ( ( ( 𝑀 / 𝑢 ) · 𝑢 ) + ( 𝑋 · 𝑢 ) ) ) |
| 123 |
108 107 110
|
divcan1d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑀 / 𝑢 ) · 𝑢 ) = 𝑀 ) |
| 124 |
123
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( 𝑀 / 𝑢 ) · 𝑢 ) + ( 𝑋 · 𝑢 ) ) = ( 𝑀 + ( 𝑋 · 𝑢 ) ) ) |
| 125 |
108 118
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑀 + ( 𝑋 · 𝑢 ) ) = ( ( 𝑋 · 𝑢 ) + 𝑀 ) ) |
| 126 |
122 124 125
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑋 · 𝑢 ) + 𝑀 ) = ( ( ( 𝑀 / 𝑢 ) + 𝑋 ) · 𝑢 ) ) |
| 127 |
121 126
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑢 ↑ 2 ) = ( ( 𝑋 · 𝑢 ) + 𝑀 ) ↔ ( 𝑢 · 𝑢 ) = ( ( ( 𝑀 / 𝑢 ) + 𝑋 ) · 𝑢 ) ) ) |
| 128 |
111 112
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑀 / 𝑢 ) + 𝑋 ) ∈ ℂ ) |
| 129 |
107 128 107 110
|
mulcan2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑢 · 𝑢 ) = ( ( ( 𝑀 / 𝑢 ) + 𝑋 ) · 𝑢 ) ↔ 𝑢 = ( ( 𝑀 / 𝑢 ) + 𝑋 ) ) ) |
| 130 |
120 127 129
|
3bitrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( 𝑢 ↑ 2 ) − ( ( 𝑋 · 𝑢 ) + 𝑀 ) ) = 0 ↔ 𝑢 = ( ( 𝑀 / 𝑢 ) + 𝑋 ) ) ) |
| 131 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → 1 ∈ ℂ ) |
| 132 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 133 |
132
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → 1 ≠ 0 ) |
| 134 |
3
|
negcld |
⊢ ( 𝜑 → - 𝑋 ∈ ℂ ) |
| 135 |
134
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → - 𝑋 ∈ ℂ ) |
| 136 |
55
|
negcld |
⊢ ( 𝜑 → - 𝑀 ∈ ℂ ) |
| 137 |
136
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → - 𝑀 ∈ ℂ ) |
| 138 |
|
sqneg |
⊢ ( 𝑋 ∈ ℂ → ( - 𝑋 ↑ 2 ) = ( 𝑋 ↑ 2 ) ) |
| 139 |
112 138
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( - 𝑋 ↑ 2 ) = ( 𝑋 ↑ 2 ) ) |
| 140 |
137
|
mullidd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 1 · - 𝑀 ) = - 𝑀 ) |
| 141 |
140
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 4 · ( 1 · - 𝑀 ) ) = ( 4 · - 𝑀 ) ) |
| 142 |
|
mulneg2 |
⊢ ( ( 4 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( 4 · - 𝑀 ) = - ( 4 · 𝑀 ) ) |
| 143 |
57 108 142
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 4 · - 𝑀 ) = - ( 4 · 𝑀 ) ) |
| 144 |
141 143
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 4 · ( 1 · - 𝑀 ) ) = - ( 4 · 𝑀 ) ) |
| 145 |
139 144
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( - 𝑋 ↑ 2 ) − ( 4 · ( 1 · - 𝑀 ) ) ) = ( ( 𝑋 ↑ 2 ) − - ( 4 · 𝑀 ) ) ) |
| 146 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑋 ↑ 2 ) ∈ ℂ ) |
| 147 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 4 · 𝑀 ) ∈ ℂ ) |
| 148 |
146 147
|
subnegd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑋 ↑ 2 ) − - ( 4 · 𝑀 ) ) = ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) |
| 149 |
145 148
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) = ( ( - 𝑋 ↑ 2 ) − ( 4 · ( 1 · - 𝑀 ) ) ) ) |
| 150 |
131 133 135 137 107 149
|
quad |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( 1 · ( 𝑢 ↑ 2 ) ) + ( ( - 𝑋 · 𝑢 ) + - 𝑀 ) ) = 0 ↔ ( 𝑢 = ( ( - - 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / ( 2 · 1 ) ) ∨ 𝑢 = ( ( - - 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / ( 2 · 1 ) ) ) ) ) |
| 151 |
117
|
mullidd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 1 · ( 𝑢 ↑ 2 ) ) = ( 𝑢 ↑ 2 ) ) |
| 152 |
112 107
|
mulneg1d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( - 𝑋 · 𝑢 ) = - ( 𝑋 · 𝑢 ) ) |
| 153 |
152
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( - 𝑋 · 𝑢 ) + - 𝑀 ) = ( - ( 𝑋 · 𝑢 ) + - 𝑀 ) ) |
| 154 |
118 108
|
negdid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → - ( ( 𝑋 · 𝑢 ) + 𝑀 ) = ( - ( 𝑋 · 𝑢 ) + - 𝑀 ) ) |
| 155 |
153 154
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( - 𝑋 · 𝑢 ) + - 𝑀 ) = - ( ( 𝑋 · 𝑢 ) + 𝑀 ) ) |
| 156 |
151 155
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 1 · ( 𝑢 ↑ 2 ) ) + ( ( - 𝑋 · 𝑢 ) + - 𝑀 ) ) = ( ( 𝑢 ↑ 2 ) + - ( ( 𝑋 · 𝑢 ) + 𝑀 ) ) ) |
| 157 |
117 119
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑢 ↑ 2 ) + - ( ( 𝑋 · 𝑢 ) + 𝑀 ) ) = ( ( 𝑢 ↑ 2 ) − ( ( 𝑋 · 𝑢 ) + 𝑀 ) ) ) |
| 158 |
156 157
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 1 · ( 𝑢 ↑ 2 ) ) + ( ( - 𝑋 · 𝑢 ) + - 𝑀 ) ) = ( ( 𝑢 ↑ 2 ) − ( ( 𝑋 · 𝑢 ) + 𝑀 ) ) ) |
| 159 |
158
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( 1 · ( 𝑢 ↑ 2 ) ) + ( ( - 𝑋 · 𝑢 ) + - 𝑀 ) ) = 0 ↔ ( ( 𝑢 ↑ 2 ) − ( ( 𝑋 · 𝑢 ) + 𝑀 ) ) = 0 ) ) |
| 160 |
112
|
negnegd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → - - 𝑋 = 𝑋 ) |
| 161 |
160
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( - - 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) = ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) ) |
| 162 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
| 163 |
162
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 2 · 1 ) = 2 ) |
| 164 |
161 163
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( - - 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / ( 2 · 1 ) ) = ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) |
| 165 |
164
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑢 = ( ( - - 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / ( 2 · 1 ) ) ↔ 𝑢 = ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) ) |
| 166 |
160
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( - - 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) = ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) ) |
| 167 |
166 163
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( - - 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / ( 2 · 1 ) ) = ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) |
| 168 |
167
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑢 = ( ( - - 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / ( 2 · 1 ) ) ↔ 𝑢 = ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) ) |
| 169 |
165 168
|
orbi12d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑢 = ( ( - - 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / ( 2 · 1 ) ) ∨ 𝑢 = ( ( - - 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / ( 2 · 1 ) ) ) ↔ ( 𝑢 = ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∨ 𝑢 = ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) ) ) |
| 170 |
150 159 169
|
3bitr3d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( 𝑢 ↑ 2 ) − ( ( 𝑋 · 𝑢 ) + 𝑀 ) ) = 0 ↔ ( 𝑢 = ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∨ 𝑢 = ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) ) ) |
| 171 |
116 130 170
|
3bitr2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ↔ ( 𝑢 = ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∨ 𝑢 = ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) ) ) |
| 172 |
171
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ↔ ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) ( 𝑢 = ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∨ 𝑢 = ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) ) ) |
| 173 |
|
r19.43 |
⊢ ( ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) ( 𝑢 = ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∨ 𝑢 = ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) ↔ ( ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑢 = ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∨ ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑢 = ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) ) |
| 174 |
172 173
|
bitrdi |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ↔ ( ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑢 = ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∨ ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑢 = ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) ) ) |
| 175 |
|
risset |
⊢ ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∈ ( ℂ ∖ { 0 } ) ↔ ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑢 = ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) |
| 176 |
3 96
|
addcld |
⊢ ( 𝜑 → ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) ∈ ℂ ) |
| 177 |
176
|
halfcld |
⊢ ( 𝜑 → ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∈ ℂ ) |
| 178 |
|
eldifsn |
⊢ ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∈ ℂ ∧ ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ≠ 0 ) ) |
| 179 |
178
|
baib |
⊢ ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∈ ℂ → ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ≠ 0 ) ) |
| 180 |
177 179
|
syl |
⊢ ( 𝜑 → ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ≠ 0 ) ) |
| 181 |
175 180
|
bitr3id |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑢 = ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ↔ ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ≠ 0 ) ) |
| 182 |
|
risset |
⊢ ( ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∈ ( ℂ ∖ { 0 } ) ↔ ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑢 = ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) |
| 183 |
3 96
|
subcld |
⊢ ( 𝜑 → ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) ∈ ℂ ) |
| 184 |
183
|
halfcld |
⊢ ( 𝜑 → ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∈ ℂ ) |
| 185 |
|
eldifsn |
⊢ ( ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∈ ℂ ∧ ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ≠ 0 ) ) |
| 186 |
185
|
baib |
⊢ ( ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∈ ℂ → ( ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ≠ 0 ) ) |
| 187 |
184 186
|
syl |
⊢ ( 𝜑 → ( ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ≠ 0 ) ) |
| 188 |
182 187
|
bitr3id |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑢 = ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ↔ ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ≠ 0 ) ) |
| 189 |
181 188
|
orbi12d |
⊢ ( 𝜑 → ( ( ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑢 = ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∨ ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑢 = ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) ↔ ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ≠ 0 ∨ ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ≠ 0 ) ) ) |
| 190 |
|
neorian |
⊢ ( ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ≠ 0 ∨ ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ≠ 0 ) ↔ ¬ ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ∧ ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ) ) |
| 191 |
189 190
|
bitrdi |
⊢ ( 𝜑 → ( ( ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑢 = ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ∨ ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑢 = ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) ) ↔ ¬ ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ∧ ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ) ) ) |
| 192 |
174 191
|
bitrd |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ↔ ¬ ( ( ( 𝑋 + ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ∧ ( ( 𝑋 − ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) ) / 2 ) = 0 ) ) ) |
| 193 |
105 192
|
sylibrd |
⊢ ( 𝜑 → ( ¬ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) → ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) ) |
| 194 |
193
|
imp |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 = 0 ∧ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 4 · 𝑀 ) ) ) = 0 ) ) → ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) |
| 195 |
90 194
|
syldan |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) → ∃ 𝑢 ∈ ( ℂ ∖ { 0 } ) 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) |
| 196 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) ) → 𝑃 ∈ ℂ ) |
| 197 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) ) → 𝑄 ∈ ℂ ) |
| 198 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) ) → 𝑋 ∈ ℂ ) |
| 199 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) ) → 𝑇 ∈ ℂ ) |
| 200 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) ) → ( 𝑇 ↑ 3 ) = ( 𝐺 − 𝑁 ) ) |
| 201 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) ) → 𝐺 ∈ ℂ ) |
| 202 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) ) → ( 𝐺 ↑ 2 ) = ( ( 𝑁 ↑ 2 ) + ( 𝑀 ↑ 3 ) ) ) |
| 203 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) ) → 𝑀 = ( 𝑃 / 3 ) ) |
| 204 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) ) → 𝑁 = ( 𝑄 / 2 ) ) |
| 205 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) ) → 𝑇 ≠ 0 ) |
| 206 |
106
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) ) → 𝑢 ∈ ℂ ) |
| 207 |
109
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) ) → 𝑢 ≠ 0 ) |
| 208 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) ) → 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) |
| 209 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) ) → ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) |
| 210 |
196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
dcubic2 |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ∧ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑋 = ( 𝑢 − ( 𝑀 / 𝑢 ) ) ) ) → ∃ 𝑟 ∈ ℂ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) |
| 211 |
195 210
|
rexlimddv |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) → ∃ 𝑟 ∈ ℂ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) |
| 212 |
211
|
ex |
⊢ ( 𝜑 → ( ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 → ∃ 𝑟 ∈ ℂ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) ) |
| 213 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → 𝑃 ∈ ℂ ) |
| 214 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → 𝑄 ∈ ℂ ) |
| 215 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → 𝑋 ∈ ℂ ) |
| 216 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → 𝑟 ∈ ℂ ) |
| 217 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → 𝑇 ∈ ℂ ) |
| 218 |
216 217
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → ( 𝑟 · 𝑇 ) ∈ ℂ ) |
| 219 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 220 |
219
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → 3 ∈ ℕ0 ) |
| 221 |
216 217 220
|
mulexpd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → ( ( 𝑟 · 𝑇 ) ↑ 3 ) = ( ( 𝑟 ↑ 3 ) · ( 𝑇 ↑ 3 ) ) ) |
| 222 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → ( 𝑟 ↑ 3 ) = 1 ) |
| 223 |
222
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → ( ( 𝑟 ↑ 3 ) · ( 𝑇 ↑ 3 ) ) = ( 1 · ( 𝑇 ↑ 3 ) ) ) |
| 224 |
|
expcl |
⊢ ( ( 𝑇 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝑇 ↑ 3 ) ∈ ℂ ) |
| 225 |
4 219 224
|
sylancl |
⊢ ( 𝜑 → ( 𝑇 ↑ 3 ) ∈ ℂ ) |
| 226 |
225
|
mullidd |
⊢ ( 𝜑 → ( 1 · ( 𝑇 ↑ 3 ) ) = ( 𝑇 ↑ 3 ) ) |
| 227 |
226 5
|
eqtrd |
⊢ ( 𝜑 → ( 1 · ( 𝑇 ↑ 3 ) ) = ( 𝐺 − 𝑁 ) ) |
| 228 |
227
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → ( 1 · ( 𝑇 ↑ 3 ) ) = ( 𝐺 − 𝑁 ) ) |
| 229 |
221 223 228
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → ( ( 𝑟 · 𝑇 ) ↑ 3 ) = ( 𝐺 − 𝑁 ) ) |
| 230 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → 𝐺 ∈ ℂ ) |
| 231 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → ( 𝐺 ↑ 2 ) = ( ( 𝑁 ↑ 2 ) + ( 𝑀 ↑ 3 ) ) ) |
| 232 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → 𝑀 = ( 𝑃 / 3 ) ) |
| 233 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → 𝑁 = ( 𝑄 / 2 ) ) |
| 234 |
132
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → 1 ≠ 0 ) |
| 235 |
222 234
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → ( 𝑟 ↑ 3 ) ≠ 0 ) |
| 236 |
|
oveq1 |
⊢ ( 𝑟 = 0 → ( 𝑟 ↑ 3 ) = ( 0 ↑ 3 ) ) |
| 237 |
236 31
|
eqtrdi |
⊢ ( 𝑟 = 0 → ( 𝑟 ↑ 3 ) = 0 ) |
| 238 |
237
|
necon3i |
⊢ ( ( 𝑟 ↑ 3 ) ≠ 0 → 𝑟 ≠ 0 ) |
| 239 |
235 238
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → 𝑟 ≠ 0 ) |
| 240 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → 𝑇 ≠ 0 ) |
| 241 |
216 217 239 240
|
mulne0d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → ( 𝑟 · 𝑇 ) ≠ 0 ) |
| 242 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) |
| 243 |
213 214 215 218 229 230 231 232 233 241 242
|
dcubic1 |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℂ ) ∧ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) → ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) |
| 244 |
243
|
rexlimdva2 |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ ℂ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) → ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) ) |
| 245 |
212 244
|
impbid |
⊢ ( 𝜑 → ( ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ↔ ∃ 𝑟 ∈ ℂ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) ) |