| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dcubic.c |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
| 2 |
|
dcubic.d |
⊢ ( 𝜑 → 𝑄 ∈ ℂ ) |
| 3 |
|
dcubic.x |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 4 |
|
dcubic.t |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
| 5 |
|
dcubic.3 |
⊢ ( 𝜑 → ( 𝑇 ↑ 3 ) = ( 𝐺 − 𝑁 ) ) |
| 6 |
|
dcubic.g |
⊢ ( 𝜑 → 𝐺 ∈ ℂ ) |
| 7 |
|
dcubic.2 |
⊢ ( 𝜑 → ( 𝐺 ↑ 2 ) = ( ( 𝑁 ↑ 2 ) + ( 𝑀 ↑ 3 ) ) ) |
| 8 |
|
dcubic.m |
⊢ ( 𝜑 → 𝑀 = ( 𝑃 / 3 ) ) |
| 9 |
|
dcubic.n |
⊢ ( 𝜑 → 𝑁 = ( 𝑄 / 2 ) ) |
| 10 |
|
dcubic.0 |
⊢ ( 𝜑 → 𝑇 ≠ 0 ) |
| 11 |
|
dcubic1.x |
⊢ ( 𝜑 → 𝑋 = ( 𝑇 − ( 𝑀 / 𝑇 ) ) ) |
| 12 |
5
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑇 ↑ 3 ) ↑ 2 ) = ( ( 𝐺 − 𝑁 ) ↑ 2 ) ) |
| 13 |
2
|
halfcld |
⊢ ( 𝜑 → ( 𝑄 / 2 ) ∈ ℂ ) |
| 14 |
9 13
|
eqeltrd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 15 |
|
binom2sub |
⊢ ( ( 𝐺 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( 𝐺 − 𝑁 ) ↑ 2 ) = ( ( ( 𝐺 ↑ 2 ) − ( 2 · ( 𝐺 · 𝑁 ) ) ) + ( 𝑁 ↑ 2 ) ) ) |
| 16 |
6 14 15
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐺 − 𝑁 ) ↑ 2 ) = ( ( ( 𝐺 ↑ 2 ) − ( 2 · ( 𝐺 · 𝑁 ) ) ) + ( 𝑁 ↑ 2 ) ) ) |
| 17 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 18 |
17 6 14
|
mul12d |
⊢ ( 𝜑 → ( 2 · ( 𝐺 · 𝑁 ) ) = ( 𝐺 · ( 2 · 𝑁 ) ) ) |
| 19 |
9
|
oveq2d |
⊢ ( 𝜑 → ( 2 · 𝑁 ) = ( 2 · ( 𝑄 / 2 ) ) ) |
| 20 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 21 |
20
|
a1i |
⊢ ( 𝜑 → 2 ≠ 0 ) |
| 22 |
2 17 21
|
divcan2d |
⊢ ( 𝜑 → ( 2 · ( 𝑄 / 2 ) ) = 𝑄 ) |
| 23 |
19 22
|
eqtrd |
⊢ ( 𝜑 → ( 2 · 𝑁 ) = 𝑄 ) |
| 24 |
23
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 · ( 2 · 𝑁 ) ) = ( 𝐺 · 𝑄 ) ) |
| 25 |
6 2
|
mulcomd |
⊢ ( 𝜑 → ( 𝐺 · 𝑄 ) = ( 𝑄 · 𝐺 ) ) |
| 26 |
18 24 25
|
3eqtrd |
⊢ ( 𝜑 → ( 2 · ( 𝐺 · 𝑁 ) ) = ( 𝑄 · 𝐺 ) ) |
| 27 |
7 26
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐺 ↑ 2 ) − ( 2 · ( 𝐺 · 𝑁 ) ) ) = ( ( ( 𝑁 ↑ 2 ) + ( 𝑀 ↑ 3 ) ) − ( 𝑄 · 𝐺 ) ) ) |
| 28 |
27
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐺 ↑ 2 ) − ( 2 · ( 𝐺 · 𝑁 ) ) ) + ( 𝑁 ↑ 2 ) ) = ( ( ( ( 𝑁 ↑ 2 ) + ( 𝑀 ↑ 3 ) ) − ( 𝑄 · 𝐺 ) ) + ( 𝑁 ↑ 2 ) ) ) |
| 29 |
12 16 28
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑇 ↑ 3 ) ↑ 2 ) = ( ( ( ( 𝑁 ↑ 2 ) + ( 𝑀 ↑ 3 ) ) − ( 𝑄 · 𝐺 ) ) + ( 𝑁 ↑ 2 ) ) ) |
| 30 |
14
|
sqcld |
⊢ ( 𝜑 → ( 𝑁 ↑ 2 ) ∈ ℂ ) |
| 31 |
|
3cn |
⊢ 3 ∈ ℂ |
| 32 |
31
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℂ ) |
| 33 |
|
3ne0 |
⊢ 3 ≠ 0 |
| 34 |
33
|
a1i |
⊢ ( 𝜑 → 3 ≠ 0 ) |
| 35 |
1 32 34
|
divcld |
⊢ ( 𝜑 → ( 𝑃 / 3 ) ∈ ℂ ) |
| 36 |
8 35
|
eqeltrd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 37 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 38 |
|
expcl |
⊢ ( ( 𝑀 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝑀 ↑ 3 ) ∈ ℂ ) |
| 39 |
36 37 38
|
sylancl |
⊢ ( 𝜑 → ( 𝑀 ↑ 3 ) ∈ ℂ ) |
| 40 |
30 39
|
addcld |
⊢ ( 𝜑 → ( ( 𝑁 ↑ 2 ) + ( 𝑀 ↑ 3 ) ) ∈ ℂ ) |
| 41 |
2 6
|
mulcld |
⊢ ( 𝜑 → ( 𝑄 · 𝐺 ) ∈ ℂ ) |
| 42 |
40 30 41
|
addsubd |
⊢ ( 𝜑 → ( ( ( ( 𝑁 ↑ 2 ) + ( 𝑀 ↑ 3 ) ) + ( 𝑁 ↑ 2 ) ) − ( 𝑄 · 𝐺 ) ) = ( ( ( ( 𝑁 ↑ 2 ) + ( 𝑀 ↑ 3 ) ) − ( 𝑄 · 𝐺 ) ) + ( 𝑁 ↑ 2 ) ) ) |
| 43 |
30 39 30
|
add32d |
⊢ ( 𝜑 → ( ( ( 𝑁 ↑ 2 ) + ( 𝑀 ↑ 3 ) ) + ( 𝑁 ↑ 2 ) ) = ( ( ( 𝑁 ↑ 2 ) + ( 𝑁 ↑ 2 ) ) + ( 𝑀 ↑ 3 ) ) ) |
| 44 |
30
|
2timesd |
⊢ ( 𝜑 → ( 2 · ( 𝑁 ↑ 2 ) ) = ( ( 𝑁 ↑ 2 ) + ( 𝑁 ↑ 2 ) ) ) |
| 45 |
44
|
oveq1d |
⊢ ( 𝜑 → ( ( 2 · ( 𝑁 ↑ 2 ) ) + ( 𝑀 ↑ 3 ) ) = ( ( ( 𝑁 ↑ 2 ) + ( 𝑁 ↑ 2 ) ) + ( 𝑀 ↑ 3 ) ) ) |
| 46 |
43 45
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( 𝑁 ↑ 2 ) + ( 𝑀 ↑ 3 ) ) + ( 𝑁 ↑ 2 ) ) = ( ( 2 · ( 𝑁 ↑ 2 ) ) + ( 𝑀 ↑ 3 ) ) ) |
| 47 |
46
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝑁 ↑ 2 ) + ( 𝑀 ↑ 3 ) ) + ( 𝑁 ↑ 2 ) ) − ( 𝑄 · 𝐺 ) ) = ( ( ( 2 · ( 𝑁 ↑ 2 ) ) + ( 𝑀 ↑ 3 ) ) − ( 𝑄 · 𝐺 ) ) ) |
| 48 |
29 42 47
|
3eqtr2d |
⊢ ( 𝜑 → ( ( 𝑇 ↑ 3 ) ↑ 2 ) = ( ( ( 2 · ( 𝑁 ↑ 2 ) ) + ( 𝑀 ↑ 3 ) ) − ( 𝑄 · 𝐺 ) ) ) |
| 49 |
2 6 14
|
subdid |
⊢ ( 𝜑 → ( 𝑄 · ( 𝐺 − 𝑁 ) ) = ( ( 𝑄 · 𝐺 ) − ( 𝑄 · 𝑁 ) ) ) |
| 50 |
5
|
oveq2d |
⊢ ( 𝜑 → ( 𝑄 · ( 𝑇 ↑ 3 ) ) = ( 𝑄 · ( 𝐺 − 𝑁 ) ) ) |
| 51 |
14
|
sqvald |
⊢ ( 𝜑 → ( 𝑁 ↑ 2 ) = ( 𝑁 · 𝑁 ) ) |
| 52 |
51
|
oveq2d |
⊢ ( 𝜑 → ( 2 · ( 𝑁 ↑ 2 ) ) = ( 2 · ( 𝑁 · 𝑁 ) ) ) |
| 53 |
17 14 14
|
mulassd |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) · 𝑁 ) = ( 2 · ( 𝑁 · 𝑁 ) ) ) |
| 54 |
23
|
oveq1d |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) · 𝑁 ) = ( 𝑄 · 𝑁 ) ) |
| 55 |
52 53 54
|
3eqtr2d |
⊢ ( 𝜑 → ( 2 · ( 𝑁 ↑ 2 ) ) = ( 𝑄 · 𝑁 ) ) |
| 56 |
55
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑄 · 𝐺 ) − ( 2 · ( 𝑁 ↑ 2 ) ) ) = ( ( 𝑄 · 𝐺 ) − ( 𝑄 · 𝑁 ) ) ) |
| 57 |
49 50 56
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑄 · ( 𝑇 ↑ 3 ) ) = ( ( 𝑄 · 𝐺 ) − ( 2 · ( 𝑁 ↑ 2 ) ) ) ) |
| 58 |
57
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑄 · ( 𝑇 ↑ 3 ) ) − ( 𝑀 ↑ 3 ) ) = ( ( ( 𝑄 · 𝐺 ) − ( 2 · ( 𝑁 ↑ 2 ) ) ) − ( 𝑀 ↑ 3 ) ) ) |
| 59 |
|
2cn |
⊢ 2 ∈ ℂ |
| 60 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ ( 𝑁 ↑ 2 ) ∈ ℂ ) → ( 2 · ( 𝑁 ↑ 2 ) ) ∈ ℂ ) |
| 61 |
59 30 60
|
sylancr |
⊢ ( 𝜑 → ( 2 · ( 𝑁 ↑ 2 ) ) ∈ ℂ ) |
| 62 |
41 61 39
|
subsub4d |
⊢ ( 𝜑 → ( ( ( 𝑄 · 𝐺 ) − ( 2 · ( 𝑁 ↑ 2 ) ) ) − ( 𝑀 ↑ 3 ) ) = ( ( 𝑄 · 𝐺 ) − ( ( 2 · ( 𝑁 ↑ 2 ) ) + ( 𝑀 ↑ 3 ) ) ) ) |
| 63 |
58 62
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑄 · ( 𝑇 ↑ 3 ) ) − ( 𝑀 ↑ 3 ) ) = ( ( 𝑄 · 𝐺 ) − ( ( 2 · ( 𝑁 ↑ 2 ) ) + ( 𝑀 ↑ 3 ) ) ) ) |
| 64 |
48 63
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑇 ↑ 3 ) ↑ 2 ) + ( ( 𝑄 · ( 𝑇 ↑ 3 ) ) − ( 𝑀 ↑ 3 ) ) ) = ( ( ( ( 2 · ( 𝑁 ↑ 2 ) ) + ( 𝑀 ↑ 3 ) ) − ( 𝑄 · 𝐺 ) ) + ( ( 𝑄 · 𝐺 ) − ( ( 2 · ( 𝑁 ↑ 2 ) ) + ( 𝑀 ↑ 3 ) ) ) ) ) |
| 65 |
61 39
|
addcld |
⊢ ( 𝜑 → ( ( 2 · ( 𝑁 ↑ 2 ) ) + ( 𝑀 ↑ 3 ) ) ∈ ℂ ) |
| 66 |
|
npncan2 |
⊢ ( ( ( ( 2 · ( 𝑁 ↑ 2 ) ) + ( 𝑀 ↑ 3 ) ) ∈ ℂ ∧ ( 𝑄 · 𝐺 ) ∈ ℂ ) → ( ( ( ( 2 · ( 𝑁 ↑ 2 ) ) + ( 𝑀 ↑ 3 ) ) − ( 𝑄 · 𝐺 ) ) + ( ( 𝑄 · 𝐺 ) − ( ( 2 · ( 𝑁 ↑ 2 ) ) + ( 𝑀 ↑ 3 ) ) ) ) = 0 ) |
| 67 |
65 41 66
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ( 2 · ( 𝑁 ↑ 2 ) ) + ( 𝑀 ↑ 3 ) ) − ( 𝑄 · 𝐺 ) ) + ( ( 𝑄 · 𝐺 ) − ( ( 2 · ( 𝑁 ↑ 2 ) ) + ( 𝑀 ↑ 3 ) ) ) ) = 0 ) |
| 68 |
64 67
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑇 ↑ 3 ) ↑ 2 ) + ( ( 𝑄 · ( 𝑇 ↑ 3 ) ) − ( 𝑀 ↑ 3 ) ) ) = 0 ) |
| 69 |
1 2 3 4 5 6 7 8 9 10 4 10 11
|
dcubic1lem |
⊢ ( 𝜑 → ( ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ↔ ( ( ( 𝑇 ↑ 3 ) ↑ 2 ) + ( ( 𝑄 · ( 𝑇 ↑ 3 ) ) − ( 𝑀 ↑ 3 ) ) ) = 0 ) ) |
| 70 |
68 69
|
mpbird |
⊢ ( 𝜑 → ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) |