Metamath Proof Explorer


Theorem dcubic1

Description: Forward direction of dcubic : the claimed formula produces solutions to the cubic equation. (Contributed by Mario Carneiro, 25-Apr-2015)

Ref Expression
Hypotheses dcubic.c φ P
dcubic.d φ Q
dcubic.x φ X
dcubic.t φ T
dcubic.3 φ T 3 = G N
dcubic.g φ G
dcubic.2 φ G 2 = N 2 + M 3
dcubic.m φ M = P 3
dcubic.n φ N = Q 2
dcubic.0 φ T 0
dcubic1.x φ X = T M T
Assertion dcubic1 φ X 3 + P X + Q = 0

Proof

Step Hyp Ref Expression
1 dcubic.c φ P
2 dcubic.d φ Q
3 dcubic.x φ X
4 dcubic.t φ T
5 dcubic.3 φ T 3 = G N
6 dcubic.g φ G
7 dcubic.2 φ G 2 = N 2 + M 3
8 dcubic.m φ M = P 3
9 dcubic.n φ N = Q 2
10 dcubic.0 φ T 0
11 dcubic1.x φ X = T M T
12 5 oveq1d φ T 3 2 = G N 2
13 2 halfcld φ Q 2
14 9 13 eqeltrd φ N
15 binom2sub G N G N 2 = G 2 - 2 G N + N 2
16 6 14 15 syl2anc φ G N 2 = G 2 - 2 G N + N 2
17 2cnd φ 2
18 17 6 14 mul12d φ 2 G N = G 2 N
19 9 oveq2d φ 2 N = 2 Q 2
20 2ne0 2 0
21 20 a1i φ 2 0
22 2 17 21 divcan2d φ 2 Q 2 = Q
23 19 22 eqtrd φ 2 N = Q
24 23 oveq2d φ G 2 N = G Q
25 6 2 mulcomd φ G Q = Q G
26 18 24 25 3eqtrd φ 2 G N = Q G
27 7 26 oveq12d φ G 2 2 G N = N 2 + M 3 - Q G
28 27 oveq1d φ G 2 - 2 G N + N 2 = N 2 + M 3 - Q G + N 2
29 12 16 28 3eqtrd φ T 3 2 = N 2 + M 3 - Q G + N 2
30 14 sqcld φ N 2
31 3cn 3
32 31 a1i φ 3
33 3ne0 3 0
34 33 a1i φ 3 0
35 1 32 34 divcld φ P 3
36 8 35 eqeltrd φ M
37 3nn0 3 0
38 expcl M 3 0 M 3
39 36 37 38 sylancl φ M 3
40 30 39 addcld φ N 2 + M 3
41 2 6 mulcld φ Q G
42 40 30 41 addsubd φ N 2 + M 3 + N 2 - Q G = N 2 + M 3 - Q G + N 2
43 30 39 30 add32d φ N 2 + M 3 + N 2 = N 2 + N 2 + M 3
44 30 2timesd φ 2 N 2 = N 2 + N 2
45 44 oveq1d φ 2 N 2 + M 3 = N 2 + N 2 + M 3
46 43 45 eqtr4d φ N 2 + M 3 + N 2 = 2 N 2 + M 3
47 46 oveq1d φ N 2 + M 3 + N 2 - Q G = 2 N 2 + M 3 - Q G
48 29 42 47 3eqtr2d φ T 3 2 = 2 N 2 + M 3 - Q G
49 2 6 14 subdid φ Q G N = Q G Q N
50 5 oveq2d φ Q T 3 = Q G N
51 14 sqvald φ N 2 = N N
52 51 oveq2d φ 2 N 2 = 2 N N
53 17 14 14 mulassd φ 2 N N = 2 N N
54 23 oveq1d φ 2 N N = Q N
55 52 53 54 3eqtr2d φ 2 N 2 = Q N
56 55 oveq2d φ Q G 2 N 2 = Q G Q N
57 49 50 56 3eqtr4d φ Q T 3 = Q G 2 N 2
58 57 oveq1d φ Q T 3 M 3 = Q G - 2 N 2 - M 3
59 2cn 2
60 mulcl 2 N 2 2 N 2
61 59 30 60 sylancr φ 2 N 2
62 41 61 39 subsub4d φ Q G - 2 N 2 - M 3 = Q G 2 N 2 + M 3
63 58 62 eqtrd φ Q T 3 M 3 = Q G 2 N 2 + M 3
64 48 63 oveq12d φ T 3 2 + Q T 3 - M 3 = 2 N 2 + M 3 - Q G + Q G - 2 N 2 + M 3
65 61 39 addcld φ 2 N 2 + M 3
66 npncan2 2 N 2 + M 3 Q G 2 N 2 + M 3 - Q G + Q G - 2 N 2 + M 3 = 0
67 65 41 66 syl2anc φ 2 N 2 + M 3 - Q G + Q G - 2 N 2 + M 3 = 0
68 64 67 eqtrd φ T 3 2 + Q T 3 - M 3 = 0
69 1 2 3 4 5 6 7 8 9 10 4 10 11 dcubic1lem φ X 3 + P X + Q = 0 T 3 2 + Q T 3 - M 3 = 0
70 68 69 mpbird φ X 3 + P X + Q = 0