Metamath Proof Explorer


Theorem dcubic1

Description: Forward direction of dcubic : the claimed formula produces solutions to the cubic equation. (Contributed by Mario Carneiro, 25-Apr-2015)

Ref Expression
Hypotheses dcubic.c φP
dcubic.d φQ
dcubic.x φX
dcubic.t φT
dcubic.3 φT3=GN
dcubic.g φG
dcubic.2 φG2=N2+M3
dcubic.m φM=P3
dcubic.n φN=Q2
dcubic.0 φT0
dcubic1.x φX=TMT
Assertion dcubic1 φX3+PX+Q=0

Proof

Step Hyp Ref Expression
1 dcubic.c φP
2 dcubic.d φQ
3 dcubic.x φX
4 dcubic.t φT
5 dcubic.3 φT3=GN
6 dcubic.g φG
7 dcubic.2 φG2=N2+M3
8 dcubic.m φM=P3
9 dcubic.n φN=Q2
10 dcubic.0 φT0
11 dcubic1.x φX=TMT
12 5 oveq1d φT32=GN2
13 2 halfcld φQ2
14 9 13 eqeltrd φN
15 binom2sub GNGN2=G2-2G N+N2
16 6 14 15 syl2anc φGN2=G2-2G N+N2
17 2cnd φ2
18 17 6 14 mul12d φ2G N=G2 N
19 9 oveq2d φ2 N=2Q2
20 2ne0 20
21 20 a1i φ20
22 2 17 21 divcan2d φ2Q2=Q
23 19 22 eqtrd φ2 N=Q
24 23 oveq2d φG2 N=GQ
25 6 2 mulcomd φGQ=QG
26 18 24 25 3eqtrd φ2G N=QG
27 7 26 oveq12d φG22G N=N2+M3-QG
28 27 oveq1d φG2-2G N+N2=N2+M3-QG+N2
29 12 16 28 3eqtrd φT32=N2+M3-QG+N2
30 14 sqcld φN2
31 3cn 3
32 31 a1i φ3
33 3ne0 30
34 33 a1i φ30
35 1 32 34 divcld φP3
36 8 35 eqeltrd φM
37 3nn0 30
38 expcl M30M3
39 36 37 38 sylancl φM3
40 30 39 addcld φN2+M3
41 2 6 mulcld φQG
42 40 30 41 addsubd φN2+M3+N2-QG=N2+M3-QG+N2
43 30 39 30 add32d φN2+M3+N2=N2+N2+M3
44 30 2timesd φ2N2=N2+N2
45 44 oveq1d φ2N2+M3=N2+N2+M3
46 43 45 eqtr4d φN2+M3+N2=2N2+M3
47 46 oveq1d φN2+M3+N2-QG=2N2+M3-QG
48 29 42 47 3eqtr2d φT32=2N2+M3-QG
49 2 6 14 subdid φQGN=QGQ N
50 5 oveq2d φQT3=QGN
51 14 sqvald φN2= N N
52 51 oveq2d φ2N2=2 N N
53 17 14 14 mulassd φ2 N N=2 N N
54 23 oveq1d φ2 N N=Q N
55 52 53 54 3eqtr2d φ2N2=Q N
56 55 oveq2d φQG2N2=QGQ N
57 49 50 56 3eqtr4d φQT3=QG2N2
58 57 oveq1d φQT3M3=QG-2N2-M3
59 2cn 2
60 mulcl 2N22N2
61 59 30 60 sylancr φ2N2
62 41 61 39 subsub4d φQG-2N2-M3=QG2N2+M3
63 58 62 eqtrd φQT3M3=QG2N2+M3
64 48 63 oveq12d φT32+QT3-M3=2N2+M3-QG+QG-2N2+M3
65 61 39 addcld φ2N2+M3
66 npncan2 2N2+M3QG2N2+M3-QG+QG-2N2+M3=0
67 65 41 66 syl2anc φ2N2+M3-QG+QG-2N2+M3=0
68 64 67 eqtrd φT32+QT3-M3=0
69 1 2 3 4 5 6 7 8 9 10 4 10 11 dcubic1lem φX3+PX+Q=0T32+QT3-M3=0
70 68 69 mpbird φX3+PX+Q=0