| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dcubic.c |
|
| 2 |
|
dcubic.d |
|
| 3 |
|
dcubic.x |
|
| 4 |
|
dcubic.t |
|
| 5 |
|
dcubic.3 |
|
| 6 |
|
dcubic.g |
|
| 7 |
|
dcubic.2 |
|
| 8 |
|
dcubic.m |
|
| 9 |
|
dcubic.n |
|
| 10 |
|
dcubic.0 |
|
| 11 |
10
|
adantr |
|
| 12 |
4
|
adantr |
|
| 13 |
|
3z |
|
| 14 |
|
expne0i |
|
| 15 |
13 14
|
mp3an3 |
|
| 16 |
15
|
ex |
|
| 17 |
12 16
|
syl |
|
| 18 |
5
|
ad2antrr |
|
| 19 |
6
|
ad2antrr |
|
| 20 |
7
|
ad2antrr |
|
| 21 |
9
|
ad2antrr |
|
| 22 |
|
simprl |
|
| 23 |
22
|
oveq2d |
|
| 24 |
1
|
ad2antrr |
|
| 25 |
24
|
mul01d |
|
| 26 |
23 25
|
eqtrd |
|
| 27 |
26
|
oveq1d |
|
| 28 |
22
|
oveq1d |
|
| 29 |
|
3nn |
|
| 30 |
|
0exp |
|
| 31 |
29 30
|
ax-mp |
|
| 32 |
28 31
|
eqtrdi |
|
| 33 |
32
|
oveq1d |
|
| 34 |
|
simplr |
|
| 35 |
|
0cnd |
|
| 36 |
26 35
|
eqeltrd |
|
| 37 |
2
|
ad2antrr |
|
| 38 |
36 37
|
addcld |
|
| 39 |
38
|
addlidd |
|
| 40 |
33 34 39
|
3eqtr3rd |
|
| 41 |
37
|
addlidd |
|
| 42 |
27 40 41
|
3eqtr3rd |
|
| 43 |
42
|
oveq1d |
|
| 44 |
|
2cn |
|
| 45 |
|
2ne0 |
|
| 46 |
44 45
|
div0i |
|
| 47 |
43 46
|
eqtrdi |
|
| 48 |
21 47
|
eqtrd |
|
| 49 |
48
|
sq0id |
|
| 50 |
|
3cn |
|
| 51 |
50
|
a1i |
|
| 52 |
|
3ne0 |
|
| 53 |
52
|
a1i |
|
| 54 |
1 51 53
|
divcld |
|
| 55 |
8 54
|
eqeltrd |
|
| 56 |
55
|
ad2antrr |
|
| 57 |
|
4cn |
|
| 58 |
57
|
a1i |
|
| 59 |
|
4ne0 |
|
| 60 |
59
|
a1i |
|
| 61 |
22
|
sq0id |
|
| 62 |
61
|
oveq1d |
|
| 63 |
3
|
sqcld |
|
| 64 |
|
mulcl |
|
| 65 |
57 55 64
|
sylancr |
|
| 66 |
63 65
|
addcld |
|
| 67 |
66
|
ad2antrr |
|
| 68 |
|
simprr |
|
| 69 |
67 68
|
sqr00d |
|
| 70 |
65
|
ad2antrr |
|
| 71 |
70
|
addlidd |
|
| 72 |
62 69 71
|
3eqtr3rd |
|
| 73 |
57
|
mul01i |
|
| 74 |
72 73
|
eqtr4di |
|
| 75 |
56 35 58 60 74
|
mulcanad |
|
| 76 |
75
|
oveq1d |
|
| 77 |
76 31
|
eqtrdi |
|
| 78 |
49 77
|
oveq12d |
|
| 79 |
|
00id |
|
| 80 |
78 79
|
eqtrdi |
|
| 81 |
20 80
|
eqtrd |
|
| 82 |
19 81
|
sqeq0d |
|
| 83 |
82 48
|
oveq12d |
|
| 84 |
|
0m0e0 |
|
| 85 |
83 84
|
eqtrdi |
|
| 86 |
18 85
|
eqtrd |
|
| 87 |
86
|
ex |
|
| 88 |
87
|
necon3ad |
|
| 89 |
17 88
|
syld |
|
| 90 |
11 89
|
mpd |
|
| 91 |
|
oveq12 |
|
| 92 |
91 79
|
eqtrdi |
|
| 93 |
|
oveq12 |
|
| 94 |
93 84
|
eqtrdi |
|
| 95 |
92 94
|
jca |
|
| 96 |
66
|
sqrtcld |
|
| 97 |
|
halfaddsub |
|
| 98 |
3 96 97
|
syl2anc |
|
| 99 |
98
|
simpld |
|
| 100 |
99
|
eqeq1d |
|
| 101 |
98
|
simprd |
|
| 102 |
101
|
eqeq1d |
|
| 103 |
100 102
|
anbi12d |
|
| 104 |
95 103
|
imbitrid |
|
| 105 |
104
|
con3d |
|
| 106 |
|
eldifi |
|
| 107 |
106
|
adantl |
|
| 108 |
55
|
adantr |
|
| 109 |
|
eldifsni |
|
| 110 |
109
|
adantl |
|
| 111 |
108 107 110
|
divcld |
|
| 112 |
3
|
adantr |
|
| 113 |
107 111 112
|
subaddd |
|
| 114 |
|
eqcom |
|
| 115 |
|
eqcom |
|
| 116 |
113 114 115
|
3bitr4g |
|
| 117 |
107
|
sqcld |
|
| 118 |
112 107
|
mulcld |
|
| 119 |
118 108
|
addcld |
|
| 120 |
117 119
|
subeq0ad |
|
| 121 |
107
|
sqvald |
|
| 122 |
111 112 107
|
adddird |
|
| 123 |
108 107 110
|
divcan1d |
|
| 124 |
123
|
oveq1d |
|
| 125 |
108 118
|
addcomd |
|
| 126 |
122 124 125
|
3eqtrrd |
|
| 127 |
121 126
|
eqeq12d |
|
| 128 |
111 112
|
addcld |
|
| 129 |
107 128 107 110
|
mulcan2d |
|
| 130 |
120 127 129
|
3bitrd |
|
| 131 |
|
1cnd |
|
| 132 |
|
ax-1ne0 |
|
| 133 |
132
|
a1i |
|
| 134 |
3
|
negcld |
|
| 135 |
134
|
adantr |
|
| 136 |
55
|
negcld |
|
| 137 |
136
|
adantr |
|
| 138 |
|
sqneg |
|
| 139 |
112 138
|
syl |
|
| 140 |
137
|
mullidd |
|
| 141 |
140
|
oveq2d |
|
| 142 |
|
mulneg2 |
|
| 143 |
57 108 142
|
sylancr |
|
| 144 |
141 143
|
eqtrd |
|
| 145 |
139 144
|
oveq12d |
|
| 146 |
63
|
adantr |
|
| 147 |
65
|
adantr |
|
| 148 |
146 147
|
subnegd |
|
| 149 |
145 148
|
eqtr2d |
|
| 150 |
131 133 135 137 107 149
|
quad |
|
| 151 |
117
|
mullidd |
|
| 152 |
112 107
|
mulneg1d |
|
| 153 |
152
|
oveq1d |
|
| 154 |
118 108
|
negdid |
|
| 155 |
153 154
|
eqtr4d |
|
| 156 |
151 155
|
oveq12d |
|
| 157 |
117 119
|
negsubd |
|
| 158 |
156 157
|
eqtrd |
|
| 159 |
158
|
eqeq1d |
|
| 160 |
112
|
negnegd |
|
| 161 |
160
|
oveq1d |
|
| 162 |
|
2t1e2 |
|
| 163 |
162
|
a1i |
|
| 164 |
161 163
|
oveq12d |
|
| 165 |
164
|
eqeq2d |
|
| 166 |
160
|
oveq1d |
|
| 167 |
166 163
|
oveq12d |
|
| 168 |
167
|
eqeq2d |
|
| 169 |
165 168
|
orbi12d |
|
| 170 |
150 159 169
|
3bitr3d |
|
| 171 |
116 130 170
|
3bitr2d |
|
| 172 |
171
|
rexbidva |
|
| 173 |
|
r19.43 |
|
| 174 |
172 173
|
bitrdi |
|
| 175 |
|
risset |
|
| 176 |
3 96
|
addcld |
|
| 177 |
176
|
halfcld |
|
| 178 |
|
eldifsn |
|
| 179 |
178
|
baib |
|
| 180 |
177 179
|
syl |
|
| 181 |
175 180
|
bitr3id |
|
| 182 |
|
risset |
|
| 183 |
3 96
|
subcld |
|
| 184 |
183
|
halfcld |
|
| 185 |
|
eldifsn |
|
| 186 |
185
|
baib |
|
| 187 |
184 186
|
syl |
|
| 188 |
182 187
|
bitr3id |
|
| 189 |
181 188
|
orbi12d |
|
| 190 |
|
neorian |
|
| 191 |
189 190
|
bitrdi |
|
| 192 |
174 191
|
bitrd |
|
| 193 |
105 192
|
sylibrd |
|
| 194 |
193
|
imp |
|
| 195 |
90 194
|
syldan |
|
| 196 |
1
|
ad2antrr |
|
| 197 |
2
|
ad2antrr |
|
| 198 |
3
|
ad2antrr |
|
| 199 |
4
|
ad2antrr |
|
| 200 |
5
|
ad2antrr |
|
| 201 |
6
|
ad2antrr |
|
| 202 |
7
|
ad2antrr |
|
| 203 |
8
|
ad2antrr |
|
| 204 |
9
|
ad2antrr |
|
| 205 |
10
|
ad2antrr |
|
| 206 |
106
|
ad2antrl |
|
| 207 |
109
|
ad2antrl |
|
| 208 |
|
simprr |
|
| 209 |
|
simplr |
|
| 210 |
196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
dcubic2 |
|
| 211 |
195 210
|
rexlimddv |
|
| 212 |
211
|
ex |
|
| 213 |
1
|
ad2antrr |
|
| 214 |
2
|
ad2antrr |
|
| 215 |
3
|
ad2antrr |
|
| 216 |
|
simplr |
|
| 217 |
4
|
ad2antrr |
|
| 218 |
216 217
|
mulcld |
|
| 219 |
|
3nn0 |
|
| 220 |
219
|
a1i |
|
| 221 |
216 217 220
|
mulexpd |
|
| 222 |
|
simprl |
|
| 223 |
222
|
oveq1d |
|
| 224 |
|
expcl |
|
| 225 |
4 219 224
|
sylancl |
|
| 226 |
225
|
mullidd |
|
| 227 |
226 5
|
eqtrd |
|
| 228 |
227
|
ad2antrr |
|
| 229 |
221 223 228
|
3eqtrd |
|
| 230 |
6
|
ad2antrr |
|
| 231 |
7
|
ad2antrr |
|
| 232 |
8
|
ad2antrr |
|
| 233 |
9
|
ad2antrr |
|
| 234 |
132
|
a1i |
|
| 235 |
222 234
|
eqnetrd |
|
| 236 |
|
oveq1 |
|
| 237 |
236 31
|
eqtrdi |
|
| 238 |
237
|
necon3i |
|
| 239 |
235 238
|
syl |
|
| 240 |
10
|
ad2antrr |
|
| 241 |
216 217 239 240
|
mulne0d |
|
| 242 |
|
simprr |
|
| 243 |
213 214 215 218 229 230 231 232 233 241 242
|
dcubic1 |
|
| 244 |
243
|
rexlimdva2 |
|
| 245 |
212 244
|
impbid |
|