| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dcubic.c |
|
| 2 |
|
dcubic.d |
|
| 3 |
|
dcubic.x |
|
| 4 |
|
dcubic.t |
|
| 5 |
|
dcubic.3 |
|
| 6 |
|
dcubic.g |
|
| 7 |
|
dcubic.2 |
|
| 8 |
|
dcubic.m |
|
| 9 |
|
dcubic.n |
|
| 10 |
|
dcubic.0 |
|
| 11 |
|
dcubic2.u |
|
| 12 |
|
dcubic2.z |
|
| 13 |
|
dcubic2.2 |
|
| 14 |
|
3nn0 |
|
| 15 |
|
expcl |
|
| 16 |
11 14 15
|
sylancl |
|
| 17 |
16
|
sqvald |
|
| 18 |
17
|
oveq1d |
|
| 19 |
|
3z |
|
| 20 |
19
|
a1i |
|
| 21 |
11 12 20
|
expne0d |
|
| 22 |
16 16 21
|
divcan4d |
|
| 23 |
18 22
|
eqtr2d |
|
| 24 |
|
3cn |
|
| 25 |
24
|
a1i |
|
| 26 |
|
3ne0 |
|
| 27 |
26
|
a1i |
|
| 28 |
1 25 27
|
divcld |
|
| 29 |
8 28
|
eqeltrd |
|
| 30 |
|
expcl |
|
| 31 |
29 14 30
|
sylancl |
|
| 32 |
31 16 21
|
divcld |
|
| 33 |
2 32
|
negsubd |
|
| 34 |
2 16 21
|
divcan4d |
|
| 35 |
34
|
oveq1d |
|
| 36 |
33 35
|
eqtr4d |
|
| 37 |
1 3
|
mulcld |
|
| 38 |
37
|
negcld |
|
| 39 |
32
|
negcld |
|
| 40 |
38 39 37 2
|
add42d |
|
| 41 |
1 3
|
mulneg2d |
|
| 42 |
13
|
negeqd |
|
| 43 |
29 11 12
|
divcld |
|
| 44 |
11 43
|
negsubdid |
|
| 45 |
42 44
|
eqtrd |
|
| 46 |
45
|
oveq2d |
|
| 47 |
41 46
|
eqtr3d |
|
| 48 |
11
|
negcld |
|
| 49 |
1 48 43
|
adddid |
|
| 50 |
1 11
|
mulneg2d |
|
| 51 |
50
|
oveq1d |
|
| 52 |
47 49 51
|
3eqtrd |
|
| 53 |
52
|
oveq1d |
|
| 54 |
1 11
|
mulcld |
|
| 55 |
54
|
negcld |
|
| 56 |
1 43
|
mulcld |
|
| 57 |
55 56 39
|
addassd |
|
| 58 |
53 57
|
eqtrd |
|
| 59 |
58
|
oveq1d |
|
| 60 |
38 37
|
addcomd |
|
| 61 |
37
|
negidd |
|
| 62 |
60 61
|
eqtrd |
|
| 63 |
62
|
oveq1d |
|
| 64 |
2 39
|
addcld |
|
| 65 |
64
|
addlidd |
|
| 66 |
63 65
|
eqtrd |
|
| 67 |
40 59 66
|
3eqtr3d |
|
| 68 |
2 16
|
mulcld |
|
| 69 |
68 31 16 21
|
divsubdird |
|
| 70 |
36 67 69
|
3eqtr4d |
|
| 71 |
23 70
|
oveq12d |
|
| 72 |
11 43
|
negsubd |
|
| 73 |
13 72
|
eqtr4d |
|
| 74 |
73
|
oveq1d |
|
| 75 |
43
|
negcld |
|
| 76 |
|
binom3 |
|
| 77 |
11 75 76
|
syl2anc |
|
| 78 |
11
|
sqcld |
|
| 79 |
78 43
|
mulneg2d |
|
| 80 |
78 29 11 12
|
div12d |
|
| 81 |
11
|
sqvald |
|
| 82 |
81
|
oveq1d |
|
| 83 |
11 11 12
|
divcan4d |
|
| 84 |
82 83
|
eqtrd |
|
| 85 |
84
|
oveq2d |
|
| 86 |
80 85
|
eqtrd |
|
| 87 |
86
|
negeqd |
|
| 88 |
79 87
|
eqtrd |
|
| 89 |
88
|
oveq2d |
|
| 90 |
29 11
|
mulcld |
|
| 91 |
25 90
|
mulneg2d |
|
| 92 |
25 29 11
|
mulassd |
|
| 93 |
8
|
oveq2d |
|
| 94 |
1 25 27
|
divcan2d |
|
| 95 |
93 94
|
eqtrd |
|
| 96 |
95
|
oveq1d |
|
| 97 |
92 96
|
eqtr3d |
|
| 98 |
97
|
negeqd |
|
| 99 |
89 91 98
|
3eqtrd |
|
| 100 |
99
|
oveq2d |
|
| 101 |
|
sqneg |
|
| 102 |
43 101
|
syl |
|
| 103 |
43
|
sqvald |
|
| 104 |
102 103
|
eqtrd |
|
| 105 |
104
|
oveq2d |
|
| 106 |
11 43 43
|
mulassd |
|
| 107 |
29 11 12
|
divcan2d |
|
| 108 |
107
|
oveq1d |
|
| 109 |
105 106 108
|
3eqtr2d |
|
| 110 |
109
|
oveq2d |
|
| 111 |
25 29 43
|
mulassd |
|
| 112 |
95
|
oveq1d |
|
| 113 |
110 111 112
|
3eqtr2d |
|
| 114 |
|
3nn |
|
| 115 |
114
|
a1i |
|
| 116 |
|
n2dvds3 |
|
| 117 |
116
|
a1i |
|
| 118 |
|
oexpneg |
|
| 119 |
43 115 117 118
|
syl3anc |
|
| 120 |
14
|
a1i |
|
| 121 |
29 11 12 120
|
expdivd |
|
| 122 |
121
|
negeqd |
|
| 123 |
119 122
|
eqtrd |
|
| 124 |
113 123
|
oveq12d |
|
| 125 |
100 124
|
oveq12d |
|
| 126 |
74 77 125
|
3eqtrd |
|
| 127 |
56 39
|
addcld |
|
| 128 |
16 55 127
|
addassd |
|
| 129 |
126 128
|
eqtrd |
|
| 130 |
129
|
oveq1d |
|
| 131 |
55 127
|
addcld |
|
| 132 |
37 2
|
addcld |
|
| 133 |
16 131 132
|
addassd |
|
| 134 |
130 133
|
eqtrd |
|
| 135 |
16
|
sqcld |
|
| 136 |
68 31
|
subcld |
|
| 137 |
135 136 16 21
|
divdird |
|
| 138 |
71 134 137
|
3eqtr4d |
|
| 139 |
138
|
eqeq1d |
|
| 140 |
135 136
|
addcld |
|
| 141 |
140 16 21
|
diveq0ad |
|
| 142 |
139 141
|
bitrd |
|