Step |
Hyp |
Ref |
Expression |
1 |
|
dcubic.c |
|
2 |
|
dcubic.d |
|
3 |
|
dcubic.x |
|
4 |
|
dcubic.t |
|
5 |
|
dcubic.3 |
|
6 |
|
dcubic.g |
|
7 |
|
dcubic.2 |
|
8 |
|
dcubic.m |
|
9 |
|
dcubic.n |
|
10 |
|
dcubic.0 |
|
11 |
|
dcubic2.u |
|
12 |
|
dcubic2.z |
|
13 |
|
dcubic2.2 |
|
14 |
|
3nn0 |
|
15 |
|
expcl |
|
16 |
11 14 15
|
sylancl |
|
17 |
16
|
sqvald |
|
18 |
17
|
oveq1d |
|
19 |
|
3z |
|
20 |
19
|
a1i |
|
21 |
11 12 20
|
expne0d |
|
22 |
16 16 21
|
divcan4d |
|
23 |
18 22
|
eqtr2d |
|
24 |
|
3cn |
|
25 |
24
|
a1i |
|
26 |
|
3ne0 |
|
27 |
26
|
a1i |
|
28 |
1 25 27
|
divcld |
|
29 |
8 28
|
eqeltrd |
|
30 |
|
expcl |
|
31 |
29 14 30
|
sylancl |
|
32 |
31 16 21
|
divcld |
|
33 |
2 32
|
negsubd |
|
34 |
2 16 21
|
divcan4d |
|
35 |
34
|
oveq1d |
|
36 |
33 35
|
eqtr4d |
|
37 |
1 3
|
mulcld |
|
38 |
37
|
negcld |
|
39 |
32
|
negcld |
|
40 |
38 39 37 2
|
add42d |
|
41 |
1 3
|
mulneg2d |
|
42 |
13
|
negeqd |
|
43 |
29 11 12
|
divcld |
|
44 |
11 43
|
negsubdid |
|
45 |
42 44
|
eqtrd |
|
46 |
45
|
oveq2d |
|
47 |
41 46
|
eqtr3d |
|
48 |
11
|
negcld |
|
49 |
1 48 43
|
adddid |
|
50 |
1 11
|
mulneg2d |
|
51 |
50
|
oveq1d |
|
52 |
47 49 51
|
3eqtrd |
|
53 |
52
|
oveq1d |
|
54 |
1 11
|
mulcld |
|
55 |
54
|
negcld |
|
56 |
1 43
|
mulcld |
|
57 |
55 56 39
|
addassd |
|
58 |
53 57
|
eqtrd |
|
59 |
58
|
oveq1d |
|
60 |
38 37
|
addcomd |
|
61 |
37
|
negidd |
|
62 |
60 61
|
eqtrd |
|
63 |
62
|
oveq1d |
|
64 |
2 39
|
addcld |
|
65 |
64
|
addid2d |
|
66 |
63 65
|
eqtrd |
|
67 |
40 59 66
|
3eqtr3d |
|
68 |
2 16
|
mulcld |
|
69 |
68 31 16 21
|
divsubdird |
|
70 |
36 67 69
|
3eqtr4d |
|
71 |
23 70
|
oveq12d |
|
72 |
11 43
|
negsubd |
|
73 |
13 72
|
eqtr4d |
|
74 |
73
|
oveq1d |
|
75 |
43
|
negcld |
|
76 |
|
binom3 |
|
77 |
11 75 76
|
syl2anc |
|
78 |
11
|
sqcld |
|
79 |
78 43
|
mulneg2d |
|
80 |
78 29 11 12
|
div12d |
|
81 |
11
|
sqvald |
|
82 |
81
|
oveq1d |
|
83 |
11 11 12
|
divcan4d |
|
84 |
82 83
|
eqtrd |
|
85 |
84
|
oveq2d |
|
86 |
80 85
|
eqtrd |
|
87 |
86
|
negeqd |
|
88 |
79 87
|
eqtrd |
|
89 |
88
|
oveq2d |
|
90 |
29 11
|
mulcld |
|
91 |
25 90
|
mulneg2d |
|
92 |
25 29 11
|
mulassd |
|
93 |
8
|
oveq2d |
|
94 |
1 25 27
|
divcan2d |
|
95 |
93 94
|
eqtrd |
|
96 |
95
|
oveq1d |
|
97 |
92 96
|
eqtr3d |
|
98 |
97
|
negeqd |
|
99 |
89 91 98
|
3eqtrd |
|
100 |
99
|
oveq2d |
|
101 |
|
sqneg |
|
102 |
43 101
|
syl |
|
103 |
43
|
sqvald |
|
104 |
102 103
|
eqtrd |
|
105 |
104
|
oveq2d |
|
106 |
11 43 43
|
mulassd |
|
107 |
29 11 12
|
divcan2d |
|
108 |
107
|
oveq1d |
|
109 |
105 106 108
|
3eqtr2d |
|
110 |
109
|
oveq2d |
|
111 |
25 29 43
|
mulassd |
|
112 |
95
|
oveq1d |
|
113 |
110 111 112
|
3eqtr2d |
|
114 |
|
3nn |
|
115 |
114
|
a1i |
|
116 |
|
n2dvds3 |
|
117 |
116
|
a1i |
|
118 |
|
oexpneg |
|
119 |
43 115 117 118
|
syl3anc |
|
120 |
14
|
a1i |
|
121 |
29 11 12 120
|
expdivd |
|
122 |
121
|
negeqd |
|
123 |
119 122
|
eqtrd |
|
124 |
113 123
|
oveq12d |
|
125 |
100 124
|
oveq12d |
|
126 |
74 77 125
|
3eqtrd |
|
127 |
56 39
|
addcld |
|
128 |
16 55 127
|
addassd |
|
129 |
126 128
|
eqtrd |
|
130 |
129
|
oveq1d |
|
131 |
55 127
|
addcld |
|
132 |
37 2
|
addcld |
|
133 |
16 131 132
|
addassd |
|
134 |
130 133
|
eqtrd |
|
135 |
16
|
sqcld |
|
136 |
68 31
|
subcld |
|
137 |
135 136 16 21
|
divdird |
|
138 |
71 134 137
|
3eqtr4d |
|
139 |
138
|
eqeq1d |
|
140 |
135 136
|
addcld |
|
141 |
140 16 21
|
diveq0ad |
|
142 |
139 141
|
bitrd |
|