| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dcubic.c |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
| 2 |
|
dcubic.d |
⊢ ( 𝜑 → 𝑄 ∈ ℂ ) |
| 3 |
|
dcubic.x |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 4 |
|
dcubic.t |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
| 5 |
|
dcubic.3 |
⊢ ( 𝜑 → ( 𝑇 ↑ 3 ) = ( 𝐺 − 𝑁 ) ) |
| 6 |
|
dcubic.g |
⊢ ( 𝜑 → 𝐺 ∈ ℂ ) |
| 7 |
|
dcubic.2 |
⊢ ( 𝜑 → ( 𝐺 ↑ 2 ) = ( ( 𝑁 ↑ 2 ) + ( 𝑀 ↑ 3 ) ) ) |
| 8 |
|
dcubic.m |
⊢ ( 𝜑 → 𝑀 = ( 𝑃 / 3 ) ) |
| 9 |
|
dcubic.n |
⊢ ( 𝜑 → 𝑁 = ( 𝑄 / 2 ) ) |
| 10 |
|
dcubic.0 |
⊢ ( 𝜑 → 𝑇 ≠ 0 ) |
| 11 |
|
dcubic2.u |
⊢ ( 𝜑 → 𝑈 ∈ ℂ ) |
| 12 |
|
dcubic2.z |
⊢ ( 𝜑 → 𝑈 ≠ 0 ) |
| 13 |
|
dcubic2.2 |
⊢ ( 𝜑 → 𝑋 = ( 𝑈 − ( 𝑀 / 𝑈 ) ) ) |
| 14 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 15 |
|
expcl |
⊢ ( ( 𝑈 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝑈 ↑ 3 ) ∈ ℂ ) |
| 16 |
11 14 15
|
sylancl |
⊢ ( 𝜑 → ( 𝑈 ↑ 3 ) ∈ ℂ ) |
| 17 |
16
|
sqvald |
⊢ ( 𝜑 → ( ( 𝑈 ↑ 3 ) ↑ 2 ) = ( ( 𝑈 ↑ 3 ) · ( 𝑈 ↑ 3 ) ) ) |
| 18 |
17
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑈 ↑ 3 ) ↑ 2 ) / ( 𝑈 ↑ 3 ) ) = ( ( ( 𝑈 ↑ 3 ) · ( 𝑈 ↑ 3 ) ) / ( 𝑈 ↑ 3 ) ) ) |
| 19 |
|
3z |
⊢ 3 ∈ ℤ |
| 20 |
19
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℤ ) |
| 21 |
11 12 20
|
expne0d |
⊢ ( 𝜑 → ( 𝑈 ↑ 3 ) ≠ 0 ) |
| 22 |
16 16 21
|
divcan4d |
⊢ ( 𝜑 → ( ( ( 𝑈 ↑ 3 ) · ( 𝑈 ↑ 3 ) ) / ( 𝑈 ↑ 3 ) ) = ( 𝑈 ↑ 3 ) ) |
| 23 |
18 22
|
eqtr2d |
⊢ ( 𝜑 → ( 𝑈 ↑ 3 ) = ( ( ( 𝑈 ↑ 3 ) ↑ 2 ) / ( 𝑈 ↑ 3 ) ) ) |
| 24 |
|
3cn |
⊢ 3 ∈ ℂ |
| 25 |
24
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℂ ) |
| 26 |
|
3ne0 |
⊢ 3 ≠ 0 |
| 27 |
26
|
a1i |
⊢ ( 𝜑 → 3 ≠ 0 ) |
| 28 |
1 25 27
|
divcld |
⊢ ( 𝜑 → ( 𝑃 / 3 ) ∈ ℂ ) |
| 29 |
8 28
|
eqeltrd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 30 |
|
expcl |
⊢ ( ( 𝑀 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝑀 ↑ 3 ) ∈ ℂ ) |
| 31 |
29 14 30
|
sylancl |
⊢ ( 𝜑 → ( 𝑀 ↑ 3 ) ∈ ℂ ) |
| 32 |
31 16 21
|
divcld |
⊢ ( 𝜑 → ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ∈ ℂ ) |
| 33 |
2 32
|
negsubd |
⊢ ( 𝜑 → ( 𝑄 + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) = ( 𝑄 − ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) ) |
| 34 |
2 16 21
|
divcan4d |
⊢ ( 𝜑 → ( ( 𝑄 · ( 𝑈 ↑ 3 ) ) / ( 𝑈 ↑ 3 ) ) = 𝑄 ) |
| 35 |
34
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑄 · ( 𝑈 ↑ 3 ) ) / ( 𝑈 ↑ 3 ) ) − ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) = ( 𝑄 − ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) ) |
| 36 |
33 35
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑄 + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) = ( ( ( 𝑄 · ( 𝑈 ↑ 3 ) ) / ( 𝑈 ↑ 3 ) ) − ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) ) |
| 37 |
1 3
|
mulcld |
⊢ ( 𝜑 → ( 𝑃 · 𝑋 ) ∈ ℂ ) |
| 38 |
37
|
negcld |
⊢ ( 𝜑 → - ( 𝑃 · 𝑋 ) ∈ ℂ ) |
| 39 |
32
|
negcld |
⊢ ( 𝜑 → - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ∈ ℂ ) |
| 40 |
38 39 37 2
|
add42d |
⊢ ( 𝜑 → ( ( - ( 𝑃 · 𝑋 ) + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = ( ( - ( 𝑃 · 𝑋 ) + ( 𝑃 · 𝑋 ) ) + ( 𝑄 + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) ) ) |
| 41 |
1 3
|
mulneg2d |
⊢ ( 𝜑 → ( 𝑃 · - 𝑋 ) = - ( 𝑃 · 𝑋 ) ) |
| 42 |
13
|
negeqd |
⊢ ( 𝜑 → - 𝑋 = - ( 𝑈 − ( 𝑀 / 𝑈 ) ) ) |
| 43 |
29 11 12
|
divcld |
⊢ ( 𝜑 → ( 𝑀 / 𝑈 ) ∈ ℂ ) |
| 44 |
11 43
|
negsubdid |
⊢ ( 𝜑 → - ( 𝑈 − ( 𝑀 / 𝑈 ) ) = ( - 𝑈 + ( 𝑀 / 𝑈 ) ) ) |
| 45 |
42 44
|
eqtrd |
⊢ ( 𝜑 → - 𝑋 = ( - 𝑈 + ( 𝑀 / 𝑈 ) ) ) |
| 46 |
45
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 · - 𝑋 ) = ( 𝑃 · ( - 𝑈 + ( 𝑀 / 𝑈 ) ) ) ) |
| 47 |
41 46
|
eqtr3d |
⊢ ( 𝜑 → - ( 𝑃 · 𝑋 ) = ( 𝑃 · ( - 𝑈 + ( 𝑀 / 𝑈 ) ) ) ) |
| 48 |
11
|
negcld |
⊢ ( 𝜑 → - 𝑈 ∈ ℂ ) |
| 49 |
1 48 43
|
adddid |
⊢ ( 𝜑 → ( 𝑃 · ( - 𝑈 + ( 𝑀 / 𝑈 ) ) ) = ( ( 𝑃 · - 𝑈 ) + ( 𝑃 · ( 𝑀 / 𝑈 ) ) ) ) |
| 50 |
1 11
|
mulneg2d |
⊢ ( 𝜑 → ( 𝑃 · - 𝑈 ) = - ( 𝑃 · 𝑈 ) ) |
| 51 |
50
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑃 · - 𝑈 ) + ( 𝑃 · ( 𝑀 / 𝑈 ) ) ) = ( - ( 𝑃 · 𝑈 ) + ( 𝑃 · ( 𝑀 / 𝑈 ) ) ) ) |
| 52 |
47 49 51
|
3eqtrd |
⊢ ( 𝜑 → - ( 𝑃 · 𝑋 ) = ( - ( 𝑃 · 𝑈 ) + ( 𝑃 · ( 𝑀 / 𝑈 ) ) ) ) |
| 53 |
52
|
oveq1d |
⊢ ( 𝜑 → ( - ( 𝑃 · 𝑋 ) + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) = ( ( - ( 𝑃 · 𝑈 ) + ( 𝑃 · ( 𝑀 / 𝑈 ) ) ) + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) ) |
| 54 |
1 11
|
mulcld |
⊢ ( 𝜑 → ( 𝑃 · 𝑈 ) ∈ ℂ ) |
| 55 |
54
|
negcld |
⊢ ( 𝜑 → - ( 𝑃 · 𝑈 ) ∈ ℂ ) |
| 56 |
1 43
|
mulcld |
⊢ ( 𝜑 → ( 𝑃 · ( 𝑀 / 𝑈 ) ) ∈ ℂ ) |
| 57 |
55 56 39
|
addassd |
⊢ ( 𝜑 → ( ( - ( 𝑃 · 𝑈 ) + ( 𝑃 · ( 𝑀 / 𝑈 ) ) ) + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) = ( - ( 𝑃 · 𝑈 ) + ( ( 𝑃 · ( 𝑀 / 𝑈 ) ) + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) ) ) |
| 58 |
53 57
|
eqtrd |
⊢ ( 𝜑 → ( - ( 𝑃 · 𝑋 ) + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) = ( - ( 𝑃 · 𝑈 ) + ( ( 𝑃 · ( 𝑀 / 𝑈 ) ) + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) ) ) |
| 59 |
58
|
oveq1d |
⊢ ( 𝜑 → ( ( - ( 𝑃 · 𝑋 ) + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = ( ( - ( 𝑃 · 𝑈 ) + ( ( 𝑃 · ( 𝑀 / 𝑈 ) ) + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) ) |
| 60 |
38 37
|
addcomd |
⊢ ( 𝜑 → ( - ( 𝑃 · 𝑋 ) + ( 𝑃 · 𝑋 ) ) = ( ( 𝑃 · 𝑋 ) + - ( 𝑃 · 𝑋 ) ) ) |
| 61 |
37
|
negidd |
⊢ ( 𝜑 → ( ( 𝑃 · 𝑋 ) + - ( 𝑃 · 𝑋 ) ) = 0 ) |
| 62 |
60 61
|
eqtrd |
⊢ ( 𝜑 → ( - ( 𝑃 · 𝑋 ) + ( 𝑃 · 𝑋 ) ) = 0 ) |
| 63 |
62
|
oveq1d |
⊢ ( 𝜑 → ( ( - ( 𝑃 · 𝑋 ) + ( 𝑃 · 𝑋 ) ) + ( 𝑄 + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) ) = ( 0 + ( 𝑄 + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) ) ) |
| 64 |
2 39
|
addcld |
⊢ ( 𝜑 → ( 𝑄 + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) ∈ ℂ ) |
| 65 |
64
|
addlidd |
⊢ ( 𝜑 → ( 0 + ( 𝑄 + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) ) = ( 𝑄 + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) ) |
| 66 |
63 65
|
eqtrd |
⊢ ( 𝜑 → ( ( - ( 𝑃 · 𝑋 ) + ( 𝑃 · 𝑋 ) ) + ( 𝑄 + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) ) = ( 𝑄 + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) ) |
| 67 |
40 59 66
|
3eqtr3d |
⊢ ( 𝜑 → ( ( - ( 𝑃 · 𝑈 ) + ( ( 𝑃 · ( 𝑀 / 𝑈 ) ) + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = ( 𝑄 + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) ) |
| 68 |
2 16
|
mulcld |
⊢ ( 𝜑 → ( 𝑄 · ( 𝑈 ↑ 3 ) ) ∈ ℂ ) |
| 69 |
68 31 16 21
|
divsubdird |
⊢ ( 𝜑 → ( ( ( 𝑄 · ( 𝑈 ↑ 3 ) ) − ( 𝑀 ↑ 3 ) ) / ( 𝑈 ↑ 3 ) ) = ( ( ( 𝑄 · ( 𝑈 ↑ 3 ) ) / ( 𝑈 ↑ 3 ) ) − ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) ) |
| 70 |
36 67 69
|
3eqtr4d |
⊢ ( 𝜑 → ( ( - ( 𝑃 · 𝑈 ) + ( ( 𝑃 · ( 𝑀 / 𝑈 ) ) + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = ( ( ( 𝑄 · ( 𝑈 ↑ 3 ) ) − ( 𝑀 ↑ 3 ) ) / ( 𝑈 ↑ 3 ) ) ) |
| 71 |
23 70
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑈 ↑ 3 ) + ( ( - ( 𝑃 · 𝑈 ) + ( ( 𝑃 · ( 𝑀 / 𝑈 ) ) + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) ) = ( ( ( ( 𝑈 ↑ 3 ) ↑ 2 ) / ( 𝑈 ↑ 3 ) ) + ( ( ( 𝑄 · ( 𝑈 ↑ 3 ) ) − ( 𝑀 ↑ 3 ) ) / ( 𝑈 ↑ 3 ) ) ) ) |
| 72 |
11 43
|
negsubd |
⊢ ( 𝜑 → ( 𝑈 + - ( 𝑀 / 𝑈 ) ) = ( 𝑈 − ( 𝑀 / 𝑈 ) ) ) |
| 73 |
13 72
|
eqtr4d |
⊢ ( 𝜑 → 𝑋 = ( 𝑈 + - ( 𝑀 / 𝑈 ) ) ) |
| 74 |
73
|
oveq1d |
⊢ ( 𝜑 → ( 𝑋 ↑ 3 ) = ( ( 𝑈 + - ( 𝑀 / 𝑈 ) ) ↑ 3 ) ) |
| 75 |
43
|
negcld |
⊢ ( 𝜑 → - ( 𝑀 / 𝑈 ) ∈ ℂ ) |
| 76 |
|
binom3 |
⊢ ( ( 𝑈 ∈ ℂ ∧ - ( 𝑀 / 𝑈 ) ∈ ℂ ) → ( ( 𝑈 + - ( 𝑀 / 𝑈 ) ) ↑ 3 ) = ( ( ( 𝑈 ↑ 3 ) + ( 3 · ( ( 𝑈 ↑ 2 ) · - ( 𝑀 / 𝑈 ) ) ) ) + ( ( 3 · ( 𝑈 · ( - ( 𝑀 / 𝑈 ) ↑ 2 ) ) ) + ( - ( 𝑀 / 𝑈 ) ↑ 3 ) ) ) ) |
| 77 |
11 75 76
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑈 + - ( 𝑀 / 𝑈 ) ) ↑ 3 ) = ( ( ( 𝑈 ↑ 3 ) + ( 3 · ( ( 𝑈 ↑ 2 ) · - ( 𝑀 / 𝑈 ) ) ) ) + ( ( 3 · ( 𝑈 · ( - ( 𝑀 / 𝑈 ) ↑ 2 ) ) ) + ( - ( 𝑀 / 𝑈 ) ↑ 3 ) ) ) ) |
| 78 |
11
|
sqcld |
⊢ ( 𝜑 → ( 𝑈 ↑ 2 ) ∈ ℂ ) |
| 79 |
78 43
|
mulneg2d |
⊢ ( 𝜑 → ( ( 𝑈 ↑ 2 ) · - ( 𝑀 / 𝑈 ) ) = - ( ( 𝑈 ↑ 2 ) · ( 𝑀 / 𝑈 ) ) ) |
| 80 |
78 29 11 12
|
div12d |
⊢ ( 𝜑 → ( ( 𝑈 ↑ 2 ) · ( 𝑀 / 𝑈 ) ) = ( 𝑀 · ( ( 𝑈 ↑ 2 ) / 𝑈 ) ) ) |
| 81 |
11
|
sqvald |
⊢ ( 𝜑 → ( 𝑈 ↑ 2 ) = ( 𝑈 · 𝑈 ) ) |
| 82 |
81
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑈 ↑ 2 ) / 𝑈 ) = ( ( 𝑈 · 𝑈 ) / 𝑈 ) ) |
| 83 |
11 11 12
|
divcan4d |
⊢ ( 𝜑 → ( ( 𝑈 · 𝑈 ) / 𝑈 ) = 𝑈 ) |
| 84 |
82 83
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑈 ↑ 2 ) / 𝑈 ) = 𝑈 ) |
| 85 |
84
|
oveq2d |
⊢ ( 𝜑 → ( 𝑀 · ( ( 𝑈 ↑ 2 ) / 𝑈 ) ) = ( 𝑀 · 𝑈 ) ) |
| 86 |
80 85
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑈 ↑ 2 ) · ( 𝑀 / 𝑈 ) ) = ( 𝑀 · 𝑈 ) ) |
| 87 |
86
|
negeqd |
⊢ ( 𝜑 → - ( ( 𝑈 ↑ 2 ) · ( 𝑀 / 𝑈 ) ) = - ( 𝑀 · 𝑈 ) ) |
| 88 |
79 87
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑈 ↑ 2 ) · - ( 𝑀 / 𝑈 ) ) = - ( 𝑀 · 𝑈 ) ) |
| 89 |
88
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( ( 𝑈 ↑ 2 ) · - ( 𝑀 / 𝑈 ) ) ) = ( 3 · - ( 𝑀 · 𝑈 ) ) ) |
| 90 |
29 11
|
mulcld |
⊢ ( 𝜑 → ( 𝑀 · 𝑈 ) ∈ ℂ ) |
| 91 |
25 90
|
mulneg2d |
⊢ ( 𝜑 → ( 3 · - ( 𝑀 · 𝑈 ) ) = - ( 3 · ( 𝑀 · 𝑈 ) ) ) |
| 92 |
25 29 11
|
mulassd |
⊢ ( 𝜑 → ( ( 3 · 𝑀 ) · 𝑈 ) = ( 3 · ( 𝑀 · 𝑈 ) ) ) |
| 93 |
8
|
oveq2d |
⊢ ( 𝜑 → ( 3 · 𝑀 ) = ( 3 · ( 𝑃 / 3 ) ) ) |
| 94 |
1 25 27
|
divcan2d |
⊢ ( 𝜑 → ( 3 · ( 𝑃 / 3 ) ) = 𝑃 ) |
| 95 |
93 94
|
eqtrd |
⊢ ( 𝜑 → ( 3 · 𝑀 ) = 𝑃 ) |
| 96 |
95
|
oveq1d |
⊢ ( 𝜑 → ( ( 3 · 𝑀 ) · 𝑈 ) = ( 𝑃 · 𝑈 ) ) |
| 97 |
92 96
|
eqtr3d |
⊢ ( 𝜑 → ( 3 · ( 𝑀 · 𝑈 ) ) = ( 𝑃 · 𝑈 ) ) |
| 98 |
97
|
negeqd |
⊢ ( 𝜑 → - ( 3 · ( 𝑀 · 𝑈 ) ) = - ( 𝑃 · 𝑈 ) ) |
| 99 |
89 91 98
|
3eqtrd |
⊢ ( 𝜑 → ( 3 · ( ( 𝑈 ↑ 2 ) · - ( 𝑀 / 𝑈 ) ) ) = - ( 𝑃 · 𝑈 ) ) |
| 100 |
99
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑈 ↑ 3 ) + ( 3 · ( ( 𝑈 ↑ 2 ) · - ( 𝑀 / 𝑈 ) ) ) ) = ( ( 𝑈 ↑ 3 ) + - ( 𝑃 · 𝑈 ) ) ) |
| 101 |
|
sqneg |
⊢ ( ( 𝑀 / 𝑈 ) ∈ ℂ → ( - ( 𝑀 / 𝑈 ) ↑ 2 ) = ( ( 𝑀 / 𝑈 ) ↑ 2 ) ) |
| 102 |
43 101
|
syl |
⊢ ( 𝜑 → ( - ( 𝑀 / 𝑈 ) ↑ 2 ) = ( ( 𝑀 / 𝑈 ) ↑ 2 ) ) |
| 103 |
43
|
sqvald |
⊢ ( 𝜑 → ( ( 𝑀 / 𝑈 ) ↑ 2 ) = ( ( 𝑀 / 𝑈 ) · ( 𝑀 / 𝑈 ) ) ) |
| 104 |
102 103
|
eqtrd |
⊢ ( 𝜑 → ( - ( 𝑀 / 𝑈 ) ↑ 2 ) = ( ( 𝑀 / 𝑈 ) · ( 𝑀 / 𝑈 ) ) ) |
| 105 |
104
|
oveq2d |
⊢ ( 𝜑 → ( 𝑈 · ( - ( 𝑀 / 𝑈 ) ↑ 2 ) ) = ( 𝑈 · ( ( 𝑀 / 𝑈 ) · ( 𝑀 / 𝑈 ) ) ) ) |
| 106 |
11 43 43
|
mulassd |
⊢ ( 𝜑 → ( ( 𝑈 · ( 𝑀 / 𝑈 ) ) · ( 𝑀 / 𝑈 ) ) = ( 𝑈 · ( ( 𝑀 / 𝑈 ) · ( 𝑀 / 𝑈 ) ) ) ) |
| 107 |
29 11 12
|
divcan2d |
⊢ ( 𝜑 → ( 𝑈 · ( 𝑀 / 𝑈 ) ) = 𝑀 ) |
| 108 |
107
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑈 · ( 𝑀 / 𝑈 ) ) · ( 𝑀 / 𝑈 ) ) = ( 𝑀 · ( 𝑀 / 𝑈 ) ) ) |
| 109 |
105 106 108
|
3eqtr2d |
⊢ ( 𝜑 → ( 𝑈 · ( - ( 𝑀 / 𝑈 ) ↑ 2 ) ) = ( 𝑀 · ( 𝑀 / 𝑈 ) ) ) |
| 110 |
109
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( 𝑈 · ( - ( 𝑀 / 𝑈 ) ↑ 2 ) ) ) = ( 3 · ( 𝑀 · ( 𝑀 / 𝑈 ) ) ) ) |
| 111 |
25 29 43
|
mulassd |
⊢ ( 𝜑 → ( ( 3 · 𝑀 ) · ( 𝑀 / 𝑈 ) ) = ( 3 · ( 𝑀 · ( 𝑀 / 𝑈 ) ) ) ) |
| 112 |
95
|
oveq1d |
⊢ ( 𝜑 → ( ( 3 · 𝑀 ) · ( 𝑀 / 𝑈 ) ) = ( 𝑃 · ( 𝑀 / 𝑈 ) ) ) |
| 113 |
110 111 112
|
3eqtr2d |
⊢ ( 𝜑 → ( 3 · ( 𝑈 · ( - ( 𝑀 / 𝑈 ) ↑ 2 ) ) ) = ( 𝑃 · ( 𝑀 / 𝑈 ) ) ) |
| 114 |
|
3nn |
⊢ 3 ∈ ℕ |
| 115 |
114
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℕ ) |
| 116 |
|
n2dvds3 |
⊢ ¬ 2 ∥ 3 |
| 117 |
116
|
a1i |
⊢ ( 𝜑 → ¬ 2 ∥ 3 ) |
| 118 |
|
oexpneg |
⊢ ( ( ( 𝑀 / 𝑈 ) ∈ ℂ ∧ 3 ∈ ℕ ∧ ¬ 2 ∥ 3 ) → ( - ( 𝑀 / 𝑈 ) ↑ 3 ) = - ( ( 𝑀 / 𝑈 ) ↑ 3 ) ) |
| 119 |
43 115 117 118
|
syl3anc |
⊢ ( 𝜑 → ( - ( 𝑀 / 𝑈 ) ↑ 3 ) = - ( ( 𝑀 / 𝑈 ) ↑ 3 ) ) |
| 120 |
14
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℕ0 ) |
| 121 |
29 11 12 120
|
expdivd |
⊢ ( 𝜑 → ( ( 𝑀 / 𝑈 ) ↑ 3 ) = ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) |
| 122 |
121
|
negeqd |
⊢ ( 𝜑 → - ( ( 𝑀 / 𝑈 ) ↑ 3 ) = - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) |
| 123 |
119 122
|
eqtrd |
⊢ ( 𝜑 → ( - ( 𝑀 / 𝑈 ) ↑ 3 ) = - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) |
| 124 |
113 123
|
oveq12d |
⊢ ( 𝜑 → ( ( 3 · ( 𝑈 · ( - ( 𝑀 / 𝑈 ) ↑ 2 ) ) ) + ( - ( 𝑀 / 𝑈 ) ↑ 3 ) ) = ( ( 𝑃 · ( 𝑀 / 𝑈 ) ) + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) ) |
| 125 |
100 124
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑈 ↑ 3 ) + ( 3 · ( ( 𝑈 ↑ 2 ) · - ( 𝑀 / 𝑈 ) ) ) ) + ( ( 3 · ( 𝑈 · ( - ( 𝑀 / 𝑈 ) ↑ 2 ) ) ) + ( - ( 𝑀 / 𝑈 ) ↑ 3 ) ) ) = ( ( ( 𝑈 ↑ 3 ) + - ( 𝑃 · 𝑈 ) ) + ( ( 𝑃 · ( 𝑀 / 𝑈 ) ) + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) ) ) |
| 126 |
74 77 125
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑋 ↑ 3 ) = ( ( ( 𝑈 ↑ 3 ) + - ( 𝑃 · 𝑈 ) ) + ( ( 𝑃 · ( 𝑀 / 𝑈 ) ) + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) ) ) |
| 127 |
56 39
|
addcld |
⊢ ( 𝜑 → ( ( 𝑃 · ( 𝑀 / 𝑈 ) ) + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) ∈ ℂ ) |
| 128 |
16 55 127
|
addassd |
⊢ ( 𝜑 → ( ( ( 𝑈 ↑ 3 ) + - ( 𝑃 · 𝑈 ) ) + ( ( 𝑃 · ( 𝑀 / 𝑈 ) ) + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) ) = ( ( 𝑈 ↑ 3 ) + ( - ( 𝑃 · 𝑈 ) + ( ( 𝑃 · ( 𝑀 / 𝑈 ) ) + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) ) ) ) |
| 129 |
126 128
|
eqtrd |
⊢ ( 𝜑 → ( 𝑋 ↑ 3 ) = ( ( 𝑈 ↑ 3 ) + ( - ( 𝑃 · 𝑈 ) + ( ( 𝑃 · ( 𝑀 / 𝑈 ) ) + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) ) ) ) |
| 130 |
129
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = ( ( ( 𝑈 ↑ 3 ) + ( - ( 𝑃 · 𝑈 ) + ( ( 𝑃 · ( 𝑀 / 𝑈 ) ) + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) ) ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) ) |
| 131 |
55 127
|
addcld |
⊢ ( 𝜑 → ( - ( 𝑃 · 𝑈 ) + ( ( 𝑃 · ( 𝑀 / 𝑈 ) ) + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) ) ∈ ℂ ) |
| 132 |
37 2
|
addcld |
⊢ ( 𝜑 → ( ( 𝑃 · 𝑋 ) + 𝑄 ) ∈ ℂ ) |
| 133 |
16 131 132
|
addassd |
⊢ ( 𝜑 → ( ( ( 𝑈 ↑ 3 ) + ( - ( 𝑃 · 𝑈 ) + ( ( 𝑃 · ( 𝑀 / 𝑈 ) ) + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) ) ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = ( ( 𝑈 ↑ 3 ) + ( ( - ( 𝑃 · 𝑈 ) + ( ( 𝑃 · ( 𝑀 / 𝑈 ) ) + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) ) ) |
| 134 |
130 133
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = ( ( 𝑈 ↑ 3 ) + ( ( - ( 𝑃 · 𝑈 ) + ( ( 𝑃 · ( 𝑀 / 𝑈 ) ) + - ( ( 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) ) ) |
| 135 |
16
|
sqcld |
⊢ ( 𝜑 → ( ( 𝑈 ↑ 3 ) ↑ 2 ) ∈ ℂ ) |
| 136 |
68 31
|
subcld |
⊢ ( 𝜑 → ( ( 𝑄 · ( 𝑈 ↑ 3 ) ) − ( 𝑀 ↑ 3 ) ) ∈ ℂ ) |
| 137 |
135 136 16 21
|
divdird |
⊢ ( 𝜑 → ( ( ( ( 𝑈 ↑ 3 ) ↑ 2 ) + ( ( 𝑄 · ( 𝑈 ↑ 3 ) ) − ( 𝑀 ↑ 3 ) ) ) / ( 𝑈 ↑ 3 ) ) = ( ( ( ( 𝑈 ↑ 3 ) ↑ 2 ) / ( 𝑈 ↑ 3 ) ) + ( ( ( 𝑄 · ( 𝑈 ↑ 3 ) ) − ( 𝑀 ↑ 3 ) ) / ( 𝑈 ↑ 3 ) ) ) ) |
| 138 |
71 134 137
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = ( ( ( ( 𝑈 ↑ 3 ) ↑ 2 ) + ( ( 𝑄 · ( 𝑈 ↑ 3 ) ) − ( 𝑀 ↑ 3 ) ) ) / ( 𝑈 ↑ 3 ) ) ) |
| 139 |
138
|
eqeq1d |
⊢ ( 𝜑 → ( ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ↔ ( ( ( ( 𝑈 ↑ 3 ) ↑ 2 ) + ( ( 𝑄 · ( 𝑈 ↑ 3 ) ) − ( 𝑀 ↑ 3 ) ) ) / ( 𝑈 ↑ 3 ) ) = 0 ) ) |
| 140 |
135 136
|
addcld |
⊢ ( 𝜑 → ( ( ( 𝑈 ↑ 3 ) ↑ 2 ) + ( ( 𝑄 · ( 𝑈 ↑ 3 ) ) − ( 𝑀 ↑ 3 ) ) ) ∈ ℂ ) |
| 141 |
140 16 21
|
diveq0ad |
⊢ ( 𝜑 → ( ( ( ( ( 𝑈 ↑ 3 ) ↑ 2 ) + ( ( 𝑄 · ( 𝑈 ↑ 3 ) ) − ( 𝑀 ↑ 3 ) ) ) / ( 𝑈 ↑ 3 ) ) = 0 ↔ ( ( ( 𝑈 ↑ 3 ) ↑ 2 ) + ( ( 𝑄 · ( 𝑈 ↑ 3 ) ) − ( 𝑀 ↑ 3 ) ) ) = 0 ) ) |
| 142 |
139 141
|
bitrd |
⊢ ( 𝜑 → ( ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ↔ ( ( ( 𝑈 ↑ 3 ) ↑ 2 ) + ( ( 𝑄 · ( 𝑈 ↑ 3 ) ) − ( 𝑀 ↑ 3 ) ) ) = 0 ) ) |