| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dcubic.c |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
| 2 |
|
dcubic.d |
⊢ ( 𝜑 → 𝑄 ∈ ℂ ) |
| 3 |
|
dcubic.x |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 4 |
|
dcubic.t |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
| 5 |
|
dcubic.3 |
⊢ ( 𝜑 → ( 𝑇 ↑ 3 ) = ( 𝐺 − 𝑁 ) ) |
| 6 |
|
dcubic.g |
⊢ ( 𝜑 → 𝐺 ∈ ℂ ) |
| 7 |
|
dcubic.2 |
⊢ ( 𝜑 → ( 𝐺 ↑ 2 ) = ( ( 𝑁 ↑ 2 ) + ( 𝑀 ↑ 3 ) ) ) |
| 8 |
|
dcubic.m |
⊢ ( 𝜑 → 𝑀 = ( 𝑃 / 3 ) ) |
| 9 |
|
dcubic.n |
⊢ ( 𝜑 → 𝑁 = ( 𝑄 / 2 ) ) |
| 10 |
|
dcubic.0 |
⊢ ( 𝜑 → 𝑇 ≠ 0 ) |
| 11 |
|
dcubic2.u |
⊢ ( 𝜑 → 𝑈 ∈ ℂ ) |
| 12 |
|
dcubic2.z |
⊢ ( 𝜑 → 𝑈 ≠ 0 ) |
| 13 |
|
dcubic2.2 |
⊢ ( 𝜑 → 𝑋 = ( 𝑈 − ( 𝑀 / 𝑈 ) ) ) |
| 14 |
|
dcubic2.x |
⊢ ( 𝜑 → ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ) |
| 15 |
11 4 10
|
divcld |
⊢ ( 𝜑 → ( 𝑈 / 𝑇 ) ∈ ℂ ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ↑ 3 ) = ( 𝐺 − 𝑁 ) ) → ( 𝑈 / 𝑇 ) ∈ ℂ ) |
| 17 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℕ0 ) |
| 19 |
11 4 10 18
|
expdivd |
⊢ ( 𝜑 → ( ( 𝑈 / 𝑇 ) ↑ 3 ) = ( ( 𝑈 ↑ 3 ) / ( 𝑇 ↑ 3 ) ) ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ↑ 3 ) = ( 𝐺 − 𝑁 ) ) → ( ( 𝑈 / 𝑇 ) ↑ 3 ) = ( ( 𝑈 ↑ 3 ) / ( 𝑇 ↑ 3 ) ) ) |
| 21 |
|
oveq1 |
⊢ ( ( 𝑈 ↑ 3 ) = ( 𝐺 − 𝑁 ) → ( ( 𝑈 ↑ 3 ) / ( 𝑇 ↑ 3 ) ) = ( ( 𝐺 − 𝑁 ) / ( 𝑇 ↑ 3 ) ) ) |
| 22 |
5
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑇 ↑ 3 ) / ( 𝑇 ↑ 3 ) ) = ( ( 𝐺 − 𝑁 ) / ( 𝑇 ↑ 3 ) ) ) |
| 23 |
|
expcl |
⊢ ( ( 𝑇 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝑇 ↑ 3 ) ∈ ℂ ) |
| 24 |
4 17 23
|
sylancl |
⊢ ( 𝜑 → ( 𝑇 ↑ 3 ) ∈ ℂ ) |
| 25 |
|
3z |
⊢ 3 ∈ ℤ |
| 26 |
25
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℤ ) |
| 27 |
4 10 26
|
expne0d |
⊢ ( 𝜑 → ( 𝑇 ↑ 3 ) ≠ 0 ) |
| 28 |
24 27
|
dividd |
⊢ ( 𝜑 → ( ( 𝑇 ↑ 3 ) / ( 𝑇 ↑ 3 ) ) = 1 ) |
| 29 |
22 28
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝐺 − 𝑁 ) / ( 𝑇 ↑ 3 ) ) = 1 ) |
| 30 |
21 29
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ↑ 3 ) = ( 𝐺 − 𝑁 ) ) → ( ( 𝑈 ↑ 3 ) / ( 𝑇 ↑ 3 ) ) = 1 ) |
| 31 |
20 30
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑈 ↑ 3 ) = ( 𝐺 − 𝑁 ) ) → ( ( 𝑈 / 𝑇 ) ↑ 3 ) = 1 ) |
| 32 |
11 4 10
|
divcan1d |
⊢ ( 𝜑 → ( ( 𝑈 / 𝑇 ) · 𝑇 ) = 𝑈 ) |
| 33 |
32
|
oveq2d |
⊢ ( 𝜑 → ( 𝑀 / ( ( 𝑈 / 𝑇 ) · 𝑇 ) ) = ( 𝑀 / 𝑈 ) ) |
| 34 |
32 33
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑈 / 𝑇 ) · 𝑇 ) − ( 𝑀 / ( ( 𝑈 / 𝑇 ) · 𝑇 ) ) ) = ( 𝑈 − ( 𝑀 / 𝑈 ) ) ) |
| 35 |
13 34
|
eqtr4d |
⊢ ( 𝜑 → 𝑋 = ( ( ( 𝑈 / 𝑇 ) · 𝑇 ) − ( 𝑀 / ( ( 𝑈 / 𝑇 ) · 𝑇 ) ) ) ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ↑ 3 ) = ( 𝐺 − 𝑁 ) ) → 𝑋 = ( ( ( 𝑈 / 𝑇 ) · 𝑇 ) − ( 𝑀 / ( ( 𝑈 / 𝑇 ) · 𝑇 ) ) ) ) |
| 37 |
|
oveq1 |
⊢ ( 𝑟 = ( 𝑈 / 𝑇 ) → ( 𝑟 ↑ 3 ) = ( ( 𝑈 / 𝑇 ) ↑ 3 ) ) |
| 38 |
37
|
eqeq1d |
⊢ ( 𝑟 = ( 𝑈 / 𝑇 ) → ( ( 𝑟 ↑ 3 ) = 1 ↔ ( ( 𝑈 / 𝑇 ) ↑ 3 ) = 1 ) ) |
| 39 |
|
oveq1 |
⊢ ( 𝑟 = ( 𝑈 / 𝑇 ) → ( 𝑟 · 𝑇 ) = ( ( 𝑈 / 𝑇 ) · 𝑇 ) ) |
| 40 |
39
|
oveq2d |
⊢ ( 𝑟 = ( 𝑈 / 𝑇 ) → ( 𝑀 / ( 𝑟 · 𝑇 ) ) = ( 𝑀 / ( ( 𝑈 / 𝑇 ) · 𝑇 ) ) ) |
| 41 |
39 40
|
oveq12d |
⊢ ( 𝑟 = ( 𝑈 / 𝑇 ) → ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) = ( ( ( 𝑈 / 𝑇 ) · 𝑇 ) − ( 𝑀 / ( ( 𝑈 / 𝑇 ) · 𝑇 ) ) ) ) |
| 42 |
41
|
eqeq2d |
⊢ ( 𝑟 = ( 𝑈 / 𝑇 ) → ( 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ↔ 𝑋 = ( ( ( 𝑈 / 𝑇 ) · 𝑇 ) − ( 𝑀 / ( ( 𝑈 / 𝑇 ) · 𝑇 ) ) ) ) ) |
| 43 |
38 42
|
anbi12d |
⊢ ( 𝑟 = ( 𝑈 / 𝑇 ) → ( ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ↔ ( ( ( 𝑈 / 𝑇 ) ↑ 3 ) = 1 ∧ 𝑋 = ( ( ( 𝑈 / 𝑇 ) · 𝑇 ) − ( 𝑀 / ( ( 𝑈 / 𝑇 ) · 𝑇 ) ) ) ) ) ) |
| 44 |
43
|
rspcev |
⊢ ( ( ( 𝑈 / 𝑇 ) ∈ ℂ ∧ ( ( ( 𝑈 / 𝑇 ) ↑ 3 ) = 1 ∧ 𝑋 = ( ( ( 𝑈 / 𝑇 ) · 𝑇 ) − ( 𝑀 / ( ( 𝑈 / 𝑇 ) · 𝑇 ) ) ) ) ) → ∃ 𝑟 ∈ ℂ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) |
| 45 |
16 31 36 44
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( 𝑈 ↑ 3 ) = ( 𝐺 − 𝑁 ) ) → ∃ 𝑟 ∈ ℂ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) |
| 46 |
|
3cn |
⊢ 3 ∈ ℂ |
| 47 |
46
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℂ ) |
| 48 |
|
3ne0 |
⊢ 3 ≠ 0 |
| 49 |
48
|
a1i |
⊢ ( 𝜑 → 3 ≠ 0 ) |
| 50 |
1 47 49
|
divcld |
⊢ ( 𝜑 → ( 𝑃 / 3 ) ∈ ℂ ) |
| 51 |
8 50
|
eqeltrd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 52 |
51 11 12
|
divcld |
⊢ ( 𝜑 → ( 𝑀 / 𝑈 ) ∈ ℂ ) |
| 53 |
52
|
negcld |
⊢ ( 𝜑 → - ( 𝑀 / 𝑈 ) ∈ ℂ ) |
| 54 |
53 4 10
|
divcld |
⊢ ( 𝜑 → ( - ( 𝑀 / 𝑈 ) / 𝑇 ) ∈ ℂ ) |
| 55 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ↑ 3 ) = - ( 𝐺 + 𝑁 ) ) → ( - ( 𝑀 / 𝑈 ) / 𝑇 ) ∈ ℂ ) |
| 56 |
53 4 10 18
|
expdivd |
⊢ ( 𝜑 → ( ( - ( 𝑀 / 𝑈 ) / 𝑇 ) ↑ 3 ) = ( ( - ( 𝑀 / 𝑈 ) ↑ 3 ) / ( 𝑇 ↑ 3 ) ) ) |
| 57 |
51 11 12
|
divnegd |
⊢ ( 𝜑 → - ( 𝑀 / 𝑈 ) = ( - 𝑀 / 𝑈 ) ) |
| 58 |
57
|
oveq1d |
⊢ ( 𝜑 → ( - ( 𝑀 / 𝑈 ) ↑ 3 ) = ( ( - 𝑀 / 𝑈 ) ↑ 3 ) ) |
| 59 |
51
|
negcld |
⊢ ( 𝜑 → - 𝑀 ∈ ℂ ) |
| 60 |
59 11 12 18
|
expdivd |
⊢ ( 𝜑 → ( ( - 𝑀 / 𝑈 ) ↑ 3 ) = ( ( - 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) |
| 61 |
5
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐺 + 𝑁 ) · ( 𝑇 ↑ 3 ) ) = ( ( 𝐺 + 𝑁 ) · ( 𝐺 − 𝑁 ) ) ) |
| 62 |
2
|
halfcld |
⊢ ( 𝜑 → ( 𝑄 / 2 ) ∈ ℂ ) |
| 63 |
9 62
|
eqeltrd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 64 |
|
subsq |
⊢ ( ( 𝐺 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( 𝐺 ↑ 2 ) − ( 𝑁 ↑ 2 ) ) = ( ( 𝐺 + 𝑁 ) · ( 𝐺 − 𝑁 ) ) ) |
| 65 |
6 63 64
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐺 ↑ 2 ) − ( 𝑁 ↑ 2 ) ) = ( ( 𝐺 + 𝑁 ) · ( 𝐺 − 𝑁 ) ) ) |
| 66 |
61 65
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐺 + 𝑁 ) · ( 𝑇 ↑ 3 ) ) = ( ( 𝐺 ↑ 2 ) − ( 𝑁 ↑ 2 ) ) ) |
| 67 |
7
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐺 ↑ 2 ) − ( 𝑁 ↑ 2 ) ) = ( ( ( 𝑁 ↑ 2 ) + ( 𝑀 ↑ 3 ) ) − ( 𝑁 ↑ 2 ) ) ) |
| 68 |
63
|
sqcld |
⊢ ( 𝜑 → ( 𝑁 ↑ 2 ) ∈ ℂ ) |
| 69 |
|
expcl |
⊢ ( ( 𝑀 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝑀 ↑ 3 ) ∈ ℂ ) |
| 70 |
51 17 69
|
sylancl |
⊢ ( 𝜑 → ( 𝑀 ↑ 3 ) ∈ ℂ ) |
| 71 |
68 70
|
pncan2d |
⊢ ( 𝜑 → ( ( ( 𝑁 ↑ 2 ) + ( 𝑀 ↑ 3 ) ) − ( 𝑁 ↑ 2 ) ) = ( 𝑀 ↑ 3 ) ) |
| 72 |
66 67 71
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐺 + 𝑁 ) · ( 𝑇 ↑ 3 ) ) = ( 𝑀 ↑ 3 ) ) |
| 73 |
72
|
negeqd |
⊢ ( 𝜑 → - ( ( 𝐺 + 𝑁 ) · ( 𝑇 ↑ 3 ) ) = - ( 𝑀 ↑ 3 ) ) |
| 74 |
6 63
|
addcld |
⊢ ( 𝜑 → ( 𝐺 + 𝑁 ) ∈ ℂ ) |
| 75 |
74 24
|
mulneg1d |
⊢ ( 𝜑 → ( - ( 𝐺 + 𝑁 ) · ( 𝑇 ↑ 3 ) ) = - ( ( 𝐺 + 𝑁 ) · ( 𝑇 ↑ 3 ) ) ) |
| 76 |
|
3nn |
⊢ 3 ∈ ℕ |
| 77 |
76
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℕ ) |
| 78 |
|
n2dvds3 |
⊢ ¬ 2 ∥ 3 |
| 79 |
78
|
a1i |
⊢ ( 𝜑 → ¬ 2 ∥ 3 ) |
| 80 |
|
oexpneg |
⊢ ( ( 𝑀 ∈ ℂ ∧ 3 ∈ ℕ ∧ ¬ 2 ∥ 3 ) → ( - 𝑀 ↑ 3 ) = - ( 𝑀 ↑ 3 ) ) |
| 81 |
51 77 79 80
|
syl3anc |
⊢ ( 𝜑 → ( - 𝑀 ↑ 3 ) = - ( 𝑀 ↑ 3 ) ) |
| 82 |
73 75 81
|
3eqtr4d |
⊢ ( 𝜑 → ( - ( 𝐺 + 𝑁 ) · ( 𝑇 ↑ 3 ) ) = ( - 𝑀 ↑ 3 ) ) |
| 83 |
82
|
oveq1d |
⊢ ( 𝜑 → ( ( - ( 𝐺 + 𝑁 ) · ( 𝑇 ↑ 3 ) ) / ( 𝑈 ↑ 3 ) ) = ( ( - 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) |
| 84 |
74
|
negcld |
⊢ ( 𝜑 → - ( 𝐺 + 𝑁 ) ∈ ℂ ) |
| 85 |
|
expcl |
⊢ ( ( 𝑈 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝑈 ↑ 3 ) ∈ ℂ ) |
| 86 |
11 17 85
|
sylancl |
⊢ ( 𝜑 → ( 𝑈 ↑ 3 ) ∈ ℂ ) |
| 87 |
11 12 26
|
expne0d |
⊢ ( 𝜑 → ( 𝑈 ↑ 3 ) ≠ 0 ) |
| 88 |
84 24 86 87
|
div23d |
⊢ ( 𝜑 → ( ( - ( 𝐺 + 𝑁 ) · ( 𝑇 ↑ 3 ) ) / ( 𝑈 ↑ 3 ) ) = ( ( - ( 𝐺 + 𝑁 ) / ( 𝑈 ↑ 3 ) ) · ( 𝑇 ↑ 3 ) ) ) |
| 89 |
83 88
|
eqtr3d |
⊢ ( 𝜑 → ( ( - 𝑀 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) = ( ( - ( 𝐺 + 𝑁 ) / ( 𝑈 ↑ 3 ) ) · ( 𝑇 ↑ 3 ) ) ) |
| 90 |
58 60 89
|
3eqtrd |
⊢ ( 𝜑 → ( - ( 𝑀 / 𝑈 ) ↑ 3 ) = ( ( - ( 𝐺 + 𝑁 ) / ( 𝑈 ↑ 3 ) ) · ( 𝑇 ↑ 3 ) ) ) |
| 91 |
90
|
oveq1d |
⊢ ( 𝜑 → ( ( - ( 𝑀 / 𝑈 ) ↑ 3 ) / ( 𝑇 ↑ 3 ) ) = ( ( ( - ( 𝐺 + 𝑁 ) / ( 𝑈 ↑ 3 ) ) · ( 𝑇 ↑ 3 ) ) / ( 𝑇 ↑ 3 ) ) ) |
| 92 |
84 86 87
|
divcld |
⊢ ( 𝜑 → ( - ( 𝐺 + 𝑁 ) / ( 𝑈 ↑ 3 ) ) ∈ ℂ ) |
| 93 |
92 24 27
|
divcan4d |
⊢ ( 𝜑 → ( ( ( - ( 𝐺 + 𝑁 ) / ( 𝑈 ↑ 3 ) ) · ( 𝑇 ↑ 3 ) ) / ( 𝑇 ↑ 3 ) ) = ( - ( 𝐺 + 𝑁 ) / ( 𝑈 ↑ 3 ) ) ) |
| 94 |
56 91 93
|
3eqtrd |
⊢ ( 𝜑 → ( ( - ( 𝑀 / 𝑈 ) / 𝑇 ) ↑ 3 ) = ( - ( 𝐺 + 𝑁 ) / ( 𝑈 ↑ 3 ) ) ) |
| 95 |
94
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ↑ 3 ) = - ( 𝐺 + 𝑁 ) ) → ( ( - ( 𝑀 / 𝑈 ) / 𝑇 ) ↑ 3 ) = ( - ( 𝐺 + 𝑁 ) / ( 𝑈 ↑ 3 ) ) ) |
| 96 |
|
oveq1 |
⊢ ( ( 𝑈 ↑ 3 ) = - ( 𝐺 + 𝑁 ) → ( ( 𝑈 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) = ( - ( 𝐺 + 𝑁 ) / ( 𝑈 ↑ 3 ) ) ) |
| 97 |
96
|
eqcomd |
⊢ ( ( 𝑈 ↑ 3 ) = - ( 𝐺 + 𝑁 ) → ( - ( 𝐺 + 𝑁 ) / ( 𝑈 ↑ 3 ) ) = ( ( 𝑈 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) ) |
| 98 |
86 87
|
dividd |
⊢ ( 𝜑 → ( ( 𝑈 ↑ 3 ) / ( 𝑈 ↑ 3 ) ) = 1 ) |
| 99 |
97 98
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ↑ 3 ) = - ( 𝐺 + 𝑁 ) ) → ( - ( 𝐺 + 𝑁 ) / ( 𝑈 ↑ 3 ) ) = 1 ) |
| 100 |
95 99
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑈 ↑ 3 ) = - ( 𝐺 + 𝑁 ) ) → ( ( - ( 𝑀 / 𝑈 ) / 𝑇 ) ↑ 3 ) = 1 ) |
| 101 |
52 11
|
neg2subd |
⊢ ( 𝜑 → ( - ( 𝑀 / 𝑈 ) − - 𝑈 ) = ( 𝑈 − ( 𝑀 / 𝑈 ) ) ) |
| 102 |
13 101
|
eqtr4d |
⊢ ( 𝜑 → 𝑋 = ( - ( 𝑀 / 𝑈 ) − - 𝑈 ) ) |
| 103 |
102
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ↑ 3 ) = - ( 𝐺 + 𝑁 ) ) → 𝑋 = ( - ( 𝑀 / 𝑈 ) − - 𝑈 ) ) |
| 104 |
53 4 10
|
divcan1d |
⊢ ( 𝜑 → ( ( - ( 𝑀 / 𝑈 ) / 𝑇 ) · 𝑇 ) = - ( 𝑀 / 𝑈 ) ) |
| 105 |
104
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ↑ 3 ) = - ( 𝐺 + 𝑁 ) ) → ( ( - ( 𝑀 / 𝑈 ) / 𝑇 ) · 𝑇 ) = - ( 𝑀 / 𝑈 ) ) |
| 106 |
51 11 12
|
divneg2d |
⊢ ( 𝜑 → - ( 𝑀 / 𝑈 ) = ( 𝑀 / - 𝑈 ) ) |
| 107 |
104 106
|
eqtrd |
⊢ ( 𝜑 → ( ( - ( 𝑀 / 𝑈 ) / 𝑇 ) · 𝑇 ) = ( 𝑀 / - 𝑈 ) ) |
| 108 |
107
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ↑ 3 ) = - ( 𝐺 + 𝑁 ) ) → ( ( - ( 𝑀 / 𝑈 ) / 𝑇 ) · 𝑇 ) = ( 𝑀 / - 𝑈 ) ) |
| 109 |
108
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑈 ↑ 3 ) = - ( 𝐺 + 𝑁 ) ) → ( 𝑀 / ( ( - ( 𝑀 / 𝑈 ) / 𝑇 ) · 𝑇 ) ) = ( 𝑀 / ( 𝑀 / - 𝑈 ) ) ) |
| 110 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ↑ 3 ) = - ( 𝐺 + 𝑁 ) ) → 𝑀 ∈ ℂ ) |
| 111 |
11
|
negcld |
⊢ ( 𝜑 → - 𝑈 ∈ ℂ ) |
| 112 |
111
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ↑ 3 ) = - ( 𝐺 + 𝑁 ) ) → - 𝑈 ∈ ℂ ) |
| 113 |
75 73
|
eqtrd |
⊢ ( 𝜑 → ( - ( 𝐺 + 𝑁 ) · ( 𝑇 ↑ 3 ) ) = - ( 𝑀 ↑ 3 ) ) |
| 114 |
113
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ↑ 3 ) = - ( 𝐺 + 𝑁 ) ) → ( - ( 𝐺 + 𝑁 ) · ( 𝑇 ↑ 3 ) ) = - ( 𝑀 ↑ 3 ) ) |
| 115 |
84
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ↑ 3 ) = - ( 𝐺 + 𝑁 ) ) → - ( 𝐺 + 𝑁 ) ∈ ℂ ) |
| 116 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ↑ 3 ) = - ( 𝐺 + 𝑁 ) ) → ( 𝑇 ↑ 3 ) ∈ ℂ ) |
| 117 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ↑ 3 ) = - ( 𝐺 + 𝑁 ) ) → ( 𝑈 ↑ 3 ) = - ( 𝐺 + 𝑁 ) ) |
| 118 |
87
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ↑ 3 ) = - ( 𝐺 + 𝑁 ) ) → ( 𝑈 ↑ 3 ) ≠ 0 ) |
| 119 |
117 118
|
eqnetrrd |
⊢ ( ( 𝜑 ∧ ( 𝑈 ↑ 3 ) = - ( 𝐺 + 𝑁 ) ) → - ( 𝐺 + 𝑁 ) ≠ 0 ) |
| 120 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ↑ 3 ) = - ( 𝐺 + 𝑁 ) ) → ( 𝑇 ↑ 3 ) ≠ 0 ) |
| 121 |
115 116 119 120
|
mulne0d |
⊢ ( ( 𝜑 ∧ ( 𝑈 ↑ 3 ) = - ( 𝐺 + 𝑁 ) ) → ( - ( 𝐺 + 𝑁 ) · ( 𝑇 ↑ 3 ) ) ≠ 0 ) |
| 122 |
114 121
|
eqnetrrd |
⊢ ( ( 𝜑 ∧ ( 𝑈 ↑ 3 ) = - ( 𝐺 + 𝑁 ) ) → - ( 𝑀 ↑ 3 ) ≠ 0 ) |
| 123 |
|
oveq1 |
⊢ ( 𝑀 = 0 → ( 𝑀 ↑ 3 ) = ( 0 ↑ 3 ) ) |
| 124 |
|
0exp |
⊢ ( 3 ∈ ℕ → ( 0 ↑ 3 ) = 0 ) |
| 125 |
76 124
|
ax-mp |
⊢ ( 0 ↑ 3 ) = 0 |
| 126 |
123 125
|
eqtrdi |
⊢ ( 𝑀 = 0 → ( 𝑀 ↑ 3 ) = 0 ) |
| 127 |
126
|
negeqd |
⊢ ( 𝑀 = 0 → - ( 𝑀 ↑ 3 ) = - 0 ) |
| 128 |
|
neg0 |
⊢ - 0 = 0 |
| 129 |
127 128
|
eqtrdi |
⊢ ( 𝑀 = 0 → - ( 𝑀 ↑ 3 ) = 0 ) |
| 130 |
129
|
necon3i |
⊢ ( - ( 𝑀 ↑ 3 ) ≠ 0 → 𝑀 ≠ 0 ) |
| 131 |
122 130
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑈 ↑ 3 ) = - ( 𝐺 + 𝑁 ) ) → 𝑀 ≠ 0 ) |
| 132 |
11 12
|
negne0d |
⊢ ( 𝜑 → - 𝑈 ≠ 0 ) |
| 133 |
132
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ↑ 3 ) = - ( 𝐺 + 𝑁 ) ) → - 𝑈 ≠ 0 ) |
| 134 |
110 112 131 133
|
ddcand |
⊢ ( ( 𝜑 ∧ ( 𝑈 ↑ 3 ) = - ( 𝐺 + 𝑁 ) ) → ( 𝑀 / ( 𝑀 / - 𝑈 ) ) = - 𝑈 ) |
| 135 |
109 134
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑈 ↑ 3 ) = - ( 𝐺 + 𝑁 ) ) → ( 𝑀 / ( ( - ( 𝑀 / 𝑈 ) / 𝑇 ) · 𝑇 ) ) = - 𝑈 ) |
| 136 |
105 135
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑈 ↑ 3 ) = - ( 𝐺 + 𝑁 ) ) → ( ( ( - ( 𝑀 / 𝑈 ) / 𝑇 ) · 𝑇 ) − ( 𝑀 / ( ( - ( 𝑀 / 𝑈 ) / 𝑇 ) · 𝑇 ) ) ) = ( - ( 𝑀 / 𝑈 ) − - 𝑈 ) ) |
| 137 |
103 136
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑈 ↑ 3 ) = - ( 𝐺 + 𝑁 ) ) → 𝑋 = ( ( ( - ( 𝑀 / 𝑈 ) / 𝑇 ) · 𝑇 ) − ( 𝑀 / ( ( - ( 𝑀 / 𝑈 ) / 𝑇 ) · 𝑇 ) ) ) ) |
| 138 |
|
oveq1 |
⊢ ( 𝑟 = ( - ( 𝑀 / 𝑈 ) / 𝑇 ) → ( 𝑟 ↑ 3 ) = ( ( - ( 𝑀 / 𝑈 ) / 𝑇 ) ↑ 3 ) ) |
| 139 |
138
|
eqeq1d |
⊢ ( 𝑟 = ( - ( 𝑀 / 𝑈 ) / 𝑇 ) → ( ( 𝑟 ↑ 3 ) = 1 ↔ ( ( - ( 𝑀 / 𝑈 ) / 𝑇 ) ↑ 3 ) = 1 ) ) |
| 140 |
|
oveq1 |
⊢ ( 𝑟 = ( - ( 𝑀 / 𝑈 ) / 𝑇 ) → ( 𝑟 · 𝑇 ) = ( ( - ( 𝑀 / 𝑈 ) / 𝑇 ) · 𝑇 ) ) |
| 141 |
140
|
oveq2d |
⊢ ( 𝑟 = ( - ( 𝑀 / 𝑈 ) / 𝑇 ) → ( 𝑀 / ( 𝑟 · 𝑇 ) ) = ( 𝑀 / ( ( - ( 𝑀 / 𝑈 ) / 𝑇 ) · 𝑇 ) ) ) |
| 142 |
140 141
|
oveq12d |
⊢ ( 𝑟 = ( - ( 𝑀 / 𝑈 ) / 𝑇 ) → ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) = ( ( ( - ( 𝑀 / 𝑈 ) / 𝑇 ) · 𝑇 ) − ( 𝑀 / ( ( - ( 𝑀 / 𝑈 ) / 𝑇 ) · 𝑇 ) ) ) ) |
| 143 |
142
|
eqeq2d |
⊢ ( 𝑟 = ( - ( 𝑀 / 𝑈 ) / 𝑇 ) → ( 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ↔ 𝑋 = ( ( ( - ( 𝑀 / 𝑈 ) / 𝑇 ) · 𝑇 ) − ( 𝑀 / ( ( - ( 𝑀 / 𝑈 ) / 𝑇 ) · 𝑇 ) ) ) ) ) |
| 144 |
139 143
|
anbi12d |
⊢ ( 𝑟 = ( - ( 𝑀 / 𝑈 ) / 𝑇 ) → ( ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ↔ ( ( ( - ( 𝑀 / 𝑈 ) / 𝑇 ) ↑ 3 ) = 1 ∧ 𝑋 = ( ( ( - ( 𝑀 / 𝑈 ) / 𝑇 ) · 𝑇 ) − ( 𝑀 / ( ( - ( 𝑀 / 𝑈 ) / 𝑇 ) · 𝑇 ) ) ) ) ) ) |
| 145 |
144
|
rspcev |
⊢ ( ( ( - ( 𝑀 / 𝑈 ) / 𝑇 ) ∈ ℂ ∧ ( ( ( - ( 𝑀 / 𝑈 ) / 𝑇 ) ↑ 3 ) = 1 ∧ 𝑋 = ( ( ( - ( 𝑀 / 𝑈 ) / 𝑇 ) · 𝑇 ) − ( 𝑀 / ( ( - ( 𝑀 / 𝑈 ) / 𝑇 ) · 𝑇 ) ) ) ) ) → ∃ 𝑟 ∈ ℂ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) |
| 146 |
55 100 137 145
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( 𝑈 ↑ 3 ) = - ( 𝐺 + 𝑁 ) ) → ∃ 𝑟 ∈ ℂ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) |
| 147 |
86
|
sqcld |
⊢ ( 𝜑 → ( ( 𝑈 ↑ 3 ) ↑ 2 ) ∈ ℂ ) |
| 148 |
147
|
mullidd |
⊢ ( 𝜑 → ( 1 · ( ( 𝑈 ↑ 3 ) ↑ 2 ) ) = ( ( 𝑈 ↑ 3 ) ↑ 2 ) ) |
| 149 |
2 86
|
mulcld |
⊢ ( 𝜑 → ( 𝑄 · ( 𝑈 ↑ 3 ) ) ∈ ℂ ) |
| 150 |
149 70
|
negsubd |
⊢ ( 𝜑 → ( ( 𝑄 · ( 𝑈 ↑ 3 ) ) + - ( 𝑀 ↑ 3 ) ) = ( ( 𝑄 · ( 𝑈 ↑ 3 ) ) − ( 𝑀 ↑ 3 ) ) ) |
| 151 |
148 150
|
oveq12d |
⊢ ( 𝜑 → ( ( 1 · ( ( 𝑈 ↑ 3 ) ↑ 2 ) ) + ( ( 𝑄 · ( 𝑈 ↑ 3 ) ) + - ( 𝑀 ↑ 3 ) ) ) = ( ( ( 𝑈 ↑ 3 ) ↑ 2 ) + ( ( 𝑄 · ( 𝑈 ↑ 3 ) ) − ( 𝑀 ↑ 3 ) ) ) ) |
| 152 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
dcubic1lem |
⊢ ( 𝜑 → ( ( ( 𝑋 ↑ 3 ) + ( ( 𝑃 · 𝑋 ) + 𝑄 ) ) = 0 ↔ ( ( ( 𝑈 ↑ 3 ) ↑ 2 ) + ( ( 𝑄 · ( 𝑈 ↑ 3 ) ) − ( 𝑀 ↑ 3 ) ) ) = 0 ) ) |
| 153 |
14 152
|
mpbid |
⊢ ( 𝜑 → ( ( ( 𝑈 ↑ 3 ) ↑ 2 ) + ( ( 𝑄 · ( 𝑈 ↑ 3 ) ) − ( 𝑀 ↑ 3 ) ) ) = 0 ) |
| 154 |
151 153
|
eqtrd |
⊢ ( 𝜑 → ( ( 1 · ( ( 𝑈 ↑ 3 ) ↑ 2 ) ) + ( ( 𝑄 · ( 𝑈 ↑ 3 ) ) + - ( 𝑀 ↑ 3 ) ) ) = 0 ) |
| 155 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 156 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 157 |
156
|
a1i |
⊢ ( 𝜑 → 1 ≠ 0 ) |
| 158 |
70
|
negcld |
⊢ ( 𝜑 → - ( 𝑀 ↑ 3 ) ∈ ℂ ) |
| 159 |
|
2cn |
⊢ 2 ∈ ℂ |
| 160 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ 𝐺 ∈ ℂ ) → ( 2 · 𝐺 ) ∈ ℂ ) |
| 161 |
159 6 160
|
sylancr |
⊢ ( 𝜑 → ( 2 · 𝐺 ) ∈ ℂ ) |
| 162 |
|
sqmul |
⊢ ( ( 2 ∈ ℂ ∧ 𝐺 ∈ ℂ ) → ( ( 2 · 𝐺 ) ↑ 2 ) = ( ( 2 ↑ 2 ) · ( 𝐺 ↑ 2 ) ) ) |
| 163 |
159 6 162
|
sylancr |
⊢ ( 𝜑 → ( ( 2 · 𝐺 ) ↑ 2 ) = ( ( 2 ↑ 2 ) · ( 𝐺 ↑ 2 ) ) ) |
| 164 |
7
|
oveq2d |
⊢ ( 𝜑 → ( ( 2 ↑ 2 ) · ( 𝐺 ↑ 2 ) ) = ( ( 2 ↑ 2 ) · ( ( 𝑁 ↑ 2 ) + ( 𝑀 ↑ 3 ) ) ) ) |
| 165 |
159
|
sqcli |
⊢ ( 2 ↑ 2 ) ∈ ℂ |
| 166 |
|
mulcl |
⊢ ( ( ( 2 ↑ 2 ) ∈ ℂ ∧ ( 𝑁 ↑ 2 ) ∈ ℂ ) → ( ( 2 ↑ 2 ) · ( 𝑁 ↑ 2 ) ) ∈ ℂ ) |
| 167 |
165 68 166
|
sylancr |
⊢ ( 𝜑 → ( ( 2 ↑ 2 ) · ( 𝑁 ↑ 2 ) ) ∈ ℂ ) |
| 168 |
|
mulcl |
⊢ ( ( ( 2 ↑ 2 ) ∈ ℂ ∧ ( 𝑀 ↑ 3 ) ∈ ℂ ) → ( ( 2 ↑ 2 ) · ( 𝑀 ↑ 3 ) ) ∈ ℂ ) |
| 169 |
165 70 168
|
sylancr |
⊢ ( 𝜑 → ( ( 2 ↑ 2 ) · ( 𝑀 ↑ 3 ) ) ∈ ℂ ) |
| 170 |
167 169
|
subnegd |
⊢ ( 𝜑 → ( ( ( 2 ↑ 2 ) · ( 𝑁 ↑ 2 ) ) − - ( ( 2 ↑ 2 ) · ( 𝑀 ↑ 3 ) ) ) = ( ( ( 2 ↑ 2 ) · ( 𝑁 ↑ 2 ) ) + ( ( 2 ↑ 2 ) · ( 𝑀 ↑ 3 ) ) ) ) |
| 171 |
9
|
oveq2d |
⊢ ( 𝜑 → ( 2 · 𝑁 ) = ( 2 · ( 𝑄 / 2 ) ) ) |
| 172 |
159
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 173 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 174 |
173
|
a1i |
⊢ ( 𝜑 → 2 ≠ 0 ) |
| 175 |
2 172 174
|
divcan2d |
⊢ ( 𝜑 → ( 2 · ( 𝑄 / 2 ) ) = 𝑄 ) |
| 176 |
171 175
|
eqtrd |
⊢ ( 𝜑 → ( 2 · 𝑁 ) = 𝑄 ) |
| 177 |
176
|
oveq1d |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) ↑ 2 ) = ( 𝑄 ↑ 2 ) ) |
| 178 |
|
sqmul |
⊢ ( ( 2 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( 2 · 𝑁 ) ↑ 2 ) = ( ( 2 ↑ 2 ) · ( 𝑁 ↑ 2 ) ) ) |
| 179 |
159 63 178
|
sylancr |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) ↑ 2 ) = ( ( 2 ↑ 2 ) · ( 𝑁 ↑ 2 ) ) ) |
| 180 |
177 179
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑄 ↑ 2 ) = ( ( 2 ↑ 2 ) · ( 𝑁 ↑ 2 ) ) ) |
| 181 |
158
|
mullidd |
⊢ ( 𝜑 → ( 1 · - ( 𝑀 ↑ 3 ) ) = - ( 𝑀 ↑ 3 ) ) |
| 182 |
181
|
oveq2d |
⊢ ( 𝜑 → ( 4 · ( 1 · - ( 𝑀 ↑ 3 ) ) ) = ( 4 · - ( 𝑀 ↑ 3 ) ) ) |
| 183 |
|
4cn |
⊢ 4 ∈ ℂ |
| 184 |
|
mulneg2 |
⊢ ( ( 4 ∈ ℂ ∧ ( 𝑀 ↑ 3 ) ∈ ℂ ) → ( 4 · - ( 𝑀 ↑ 3 ) ) = - ( 4 · ( 𝑀 ↑ 3 ) ) ) |
| 185 |
183 70 184
|
sylancr |
⊢ ( 𝜑 → ( 4 · - ( 𝑀 ↑ 3 ) ) = - ( 4 · ( 𝑀 ↑ 3 ) ) ) |
| 186 |
182 185
|
eqtrd |
⊢ ( 𝜑 → ( 4 · ( 1 · - ( 𝑀 ↑ 3 ) ) ) = - ( 4 · ( 𝑀 ↑ 3 ) ) ) |
| 187 |
|
sq2 |
⊢ ( 2 ↑ 2 ) = 4 |
| 188 |
187
|
oveq1i |
⊢ ( ( 2 ↑ 2 ) · ( 𝑀 ↑ 3 ) ) = ( 4 · ( 𝑀 ↑ 3 ) ) |
| 189 |
188
|
negeqi |
⊢ - ( ( 2 ↑ 2 ) · ( 𝑀 ↑ 3 ) ) = - ( 4 · ( 𝑀 ↑ 3 ) ) |
| 190 |
186 189
|
eqtr4di |
⊢ ( 𝜑 → ( 4 · ( 1 · - ( 𝑀 ↑ 3 ) ) ) = - ( ( 2 ↑ 2 ) · ( 𝑀 ↑ 3 ) ) ) |
| 191 |
180 190
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑄 ↑ 2 ) − ( 4 · ( 1 · - ( 𝑀 ↑ 3 ) ) ) ) = ( ( ( 2 ↑ 2 ) · ( 𝑁 ↑ 2 ) ) − - ( ( 2 ↑ 2 ) · ( 𝑀 ↑ 3 ) ) ) ) |
| 192 |
165
|
a1i |
⊢ ( 𝜑 → ( 2 ↑ 2 ) ∈ ℂ ) |
| 193 |
192 68 70
|
adddid |
⊢ ( 𝜑 → ( ( 2 ↑ 2 ) · ( ( 𝑁 ↑ 2 ) + ( 𝑀 ↑ 3 ) ) ) = ( ( ( 2 ↑ 2 ) · ( 𝑁 ↑ 2 ) ) + ( ( 2 ↑ 2 ) · ( 𝑀 ↑ 3 ) ) ) ) |
| 194 |
170 191 193
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( 2 ↑ 2 ) · ( ( 𝑁 ↑ 2 ) + ( 𝑀 ↑ 3 ) ) ) = ( ( 𝑄 ↑ 2 ) − ( 4 · ( 1 · - ( 𝑀 ↑ 3 ) ) ) ) ) |
| 195 |
163 164 194
|
3eqtrd |
⊢ ( 𝜑 → ( ( 2 · 𝐺 ) ↑ 2 ) = ( ( 𝑄 ↑ 2 ) − ( 4 · ( 1 · - ( 𝑀 ↑ 3 ) ) ) ) ) |
| 196 |
155 157 2 158 86 161 195
|
quad2 |
⊢ ( 𝜑 → ( ( ( 1 · ( ( 𝑈 ↑ 3 ) ↑ 2 ) ) + ( ( 𝑄 · ( 𝑈 ↑ 3 ) ) + - ( 𝑀 ↑ 3 ) ) ) = 0 ↔ ( ( 𝑈 ↑ 3 ) = ( ( - 𝑄 + ( 2 · 𝐺 ) ) / ( 2 · 1 ) ) ∨ ( 𝑈 ↑ 3 ) = ( ( - 𝑄 − ( 2 · 𝐺 ) ) / ( 2 · 1 ) ) ) ) ) |
| 197 |
154 196
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑈 ↑ 3 ) = ( ( - 𝑄 + ( 2 · 𝐺 ) ) / ( 2 · 1 ) ) ∨ ( 𝑈 ↑ 3 ) = ( ( - 𝑄 − ( 2 · 𝐺 ) ) / ( 2 · 1 ) ) ) ) |
| 198 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
| 199 |
198
|
oveq2i |
⊢ ( ( - 𝑄 + ( 2 · 𝐺 ) ) / ( 2 · 1 ) ) = ( ( - 𝑄 + ( 2 · 𝐺 ) ) / 2 ) |
| 200 |
2
|
negcld |
⊢ ( 𝜑 → - 𝑄 ∈ ℂ ) |
| 201 |
200 161 172 174
|
divdird |
⊢ ( 𝜑 → ( ( - 𝑄 + ( 2 · 𝐺 ) ) / 2 ) = ( ( - 𝑄 / 2 ) + ( ( 2 · 𝐺 ) / 2 ) ) ) |
| 202 |
9
|
negeqd |
⊢ ( 𝜑 → - 𝑁 = - ( 𝑄 / 2 ) ) |
| 203 |
2 172 174
|
divnegd |
⊢ ( 𝜑 → - ( 𝑄 / 2 ) = ( - 𝑄 / 2 ) ) |
| 204 |
202 203
|
eqtr2d |
⊢ ( 𝜑 → ( - 𝑄 / 2 ) = - 𝑁 ) |
| 205 |
6 172 174
|
divcan3d |
⊢ ( 𝜑 → ( ( 2 · 𝐺 ) / 2 ) = 𝐺 ) |
| 206 |
204 205
|
oveq12d |
⊢ ( 𝜑 → ( ( - 𝑄 / 2 ) + ( ( 2 · 𝐺 ) / 2 ) ) = ( - 𝑁 + 𝐺 ) ) |
| 207 |
63
|
negcld |
⊢ ( 𝜑 → - 𝑁 ∈ ℂ ) |
| 208 |
207 6
|
addcomd |
⊢ ( 𝜑 → ( - 𝑁 + 𝐺 ) = ( 𝐺 + - 𝑁 ) ) |
| 209 |
6 63
|
negsubd |
⊢ ( 𝜑 → ( 𝐺 + - 𝑁 ) = ( 𝐺 − 𝑁 ) ) |
| 210 |
208 209
|
eqtrd |
⊢ ( 𝜑 → ( - 𝑁 + 𝐺 ) = ( 𝐺 − 𝑁 ) ) |
| 211 |
201 206 210
|
3eqtrd |
⊢ ( 𝜑 → ( ( - 𝑄 + ( 2 · 𝐺 ) ) / 2 ) = ( 𝐺 − 𝑁 ) ) |
| 212 |
199 211
|
eqtrid |
⊢ ( 𝜑 → ( ( - 𝑄 + ( 2 · 𝐺 ) ) / ( 2 · 1 ) ) = ( 𝐺 − 𝑁 ) ) |
| 213 |
212
|
eqeq2d |
⊢ ( 𝜑 → ( ( 𝑈 ↑ 3 ) = ( ( - 𝑄 + ( 2 · 𝐺 ) ) / ( 2 · 1 ) ) ↔ ( 𝑈 ↑ 3 ) = ( 𝐺 − 𝑁 ) ) ) |
| 214 |
198
|
oveq2i |
⊢ ( ( - 𝑄 − ( 2 · 𝐺 ) ) / ( 2 · 1 ) ) = ( ( - 𝑄 − ( 2 · 𝐺 ) ) / 2 ) |
| 215 |
204 205
|
oveq12d |
⊢ ( 𝜑 → ( ( - 𝑄 / 2 ) − ( ( 2 · 𝐺 ) / 2 ) ) = ( - 𝑁 − 𝐺 ) ) |
| 216 |
200 161 172 174
|
divsubdird |
⊢ ( 𝜑 → ( ( - 𝑄 − ( 2 · 𝐺 ) ) / 2 ) = ( ( - 𝑄 / 2 ) − ( ( 2 · 𝐺 ) / 2 ) ) ) |
| 217 |
6 63
|
addcomd |
⊢ ( 𝜑 → ( 𝐺 + 𝑁 ) = ( 𝑁 + 𝐺 ) ) |
| 218 |
217
|
negeqd |
⊢ ( 𝜑 → - ( 𝐺 + 𝑁 ) = - ( 𝑁 + 𝐺 ) ) |
| 219 |
63 6
|
negdi2d |
⊢ ( 𝜑 → - ( 𝑁 + 𝐺 ) = ( - 𝑁 − 𝐺 ) ) |
| 220 |
218 219
|
eqtrd |
⊢ ( 𝜑 → - ( 𝐺 + 𝑁 ) = ( - 𝑁 − 𝐺 ) ) |
| 221 |
215 216 220
|
3eqtr4d |
⊢ ( 𝜑 → ( ( - 𝑄 − ( 2 · 𝐺 ) ) / 2 ) = - ( 𝐺 + 𝑁 ) ) |
| 222 |
214 221
|
eqtrid |
⊢ ( 𝜑 → ( ( - 𝑄 − ( 2 · 𝐺 ) ) / ( 2 · 1 ) ) = - ( 𝐺 + 𝑁 ) ) |
| 223 |
222
|
eqeq2d |
⊢ ( 𝜑 → ( ( 𝑈 ↑ 3 ) = ( ( - 𝑄 − ( 2 · 𝐺 ) ) / ( 2 · 1 ) ) ↔ ( 𝑈 ↑ 3 ) = - ( 𝐺 + 𝑁 ) ) ) |
| 224 |
213 223
|
orbi12d |
⊢ ( 𝜑 → ( ( ( 𝑈 ↑ 3 ) = ( ( - 𝑄 + ( 2 · 𝐺 ) ) / ( 2 · 1 ) ) ∨ ( 𝑈 ↑ 3 ) = ( ( - 𝑄 − ( 2 · 𝐺 ) ) / ( 2 · 1 ) ) ) ↔ ( ( 𝑈 ↑ 3 ) = ( 𝐺 − 𝑁 ) ∨ ( 𝑈 ↑ 3 ) = - ( 𝐺 + 𝑁 ) ) ) ) |
| 225 |
197 224
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑈 ↑ 3 ) = ( 𝐺 − 𝑁 ) ∨ ( 𝑈 ↑ 3 ) = - ( 𝐺 + 𝑁 ) ) ) |
| 226 |
45 146 225
|
mpjaodan |
⊢ ( 𝜑 → ∃ 𝑟 ∈ ℂ ( ( 𝑟 ↑ 3 ) = 1 ∧ 𝑋 = ( ( 𝑟 · 𝑇 ) − ( 𝑀 / ( 𝑟 · 𝑇 ) ) ) ) ) |