| Step |
Hyp |
Ref |
Expression |
| 1 |
|
quart.a |
|- ( ph -> A e. CC ) |
| 2 |
|
quart.b |
|- ( ph -> B e. CC ) |
| 3 |
|
quart.c |
|- ( ph -> C e. CC ) |
| 4 |
|
quart.d |
|- ( ph -> D e. CC ) |
| 5 |
|
quart.x |
|- ( ph -> X e. CC ) |
| 6 |
|
quart.e |
|- ( ph -> E = -u ( A / 4 ) ) |
| 7 |
|
quart.p |
|- ( ph -> P = ( B - ( ( 3 / 8 ) x. ( A ^ 2 ) ) ) ) |
| 8 |
|
quart.q |
|- ( ph -> Q = ( ( C - ( ( A x. B ) / 2 ) ) + ( ( A ^ 3 ) / 8 ) ) ) |
| 9 |
|
quart.r |
|- ( ph -> R = ( ( D - ( ( C x. A ) / 4 ) ) + ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) - ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) ) ) |
| 10 |
|
quart.u |
|- ( ph -> U = ( ( P ^ 2 ) + ( ; 1 2 x. R ) ) ) |
| 11 |
|
quart.v |
|- ( ph -> V = ( ( -u ( 2 x. ( P ^ 3 ) ) - ( ; 2 7 x. ( Q ^ 2 ) ) ) + ( ; 7 2 x. ( P x. R ) ) ) ) |
| 12 |
|
quart.w |
|- ( ph -> W = ( sqrt ` ( ( V ^ 2 ) - ( 4 x. ( U ^ 3 ) ) ) ) ) |
| 13 |
|
quart.s |
|- ( ph -> S = ( ( sqrt ` M ) / 2 ) ) |
| 14 |
|
quart.m |
|- ( ph -> M = -u ( ( ( ( 2 x. P ) + T ) + ( U / T ) ) / 3 ) ) |
| 15 |
|
quart.t |
|- ( ph -> T = ( ( ( V + W ) / 2 ) ^c ( 1 / 3 ) ) ) |
| 16 |
|
quart.t0 |
|- ( ph -> T =/= 0 ) |
| 17 |
|
quart.m0 |
|- ( ph -> M =/= 0 ) |
| 18 |
|
quart.i |
|- ( ph -> I = ( sqrt ` ( ( -u ( S ^ 2 ) - ( P / 2 ) ) + ( ( Q / 4 ) / S ) ) ) ) |
| 19 |
|
quart.j |
|- ( ph -> J = ( sqrt ` ( ( -u ( S ^ 2 ) - ( P / 2 ) ) - ( ( Q / 4 ) / S ) ) ) ) |
| 20 |
6
|
oveq2d |
|- ( ph -> ( X - E ) = ( X - -u ( A / 4 ) ) ) |
| 21 |
|
4cn |
|- 4 e. CC |
| 22 |
21
|
a1i |
|- ( ph -> 4 e. CC ) |
| 23 |
|
4ne0 |
|- 4 =/= 0 |
| 24 |
23
|
a1i |
|- ( ph -> 4 =/= 0 ) |
| 25 |
1 22 24
|
divcld |
|- ( ph -> ( A / 4 ) e. CC ) |
| 26 |
5 25
|
subnegd |
|- ( ph -> ( X - -u ( A / 4 ) ) = ( X + ( A / 4 ) ) ) |
| 27 |
20 26
|
eqtrd |
|- ( ph -> ( X - E ) = ( X + ( A / 4 ) ) ) |
| 28 |
1 2 3 4 7 8 9 5 27
|
quart1 |
|- ( ph -> ( ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) + ( ( B x. ( X ^ 2 ) ) + ( ( C x. X ) + D ) ) ) = ( ( ( ( X - E ) ^ 4 ) + ( P x. ( ( X - E ) ^ 2 ) ) ) + ( ( Q x. ( X - E ) ) + R ) ) ) |
| 29 |
28
|
eqeq1d |
|- ( ph -> ( ( ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) + ( ( B x. ( X ^ 2 ) ) + ( ( C x. X ) + D ) ) ) = 0 <-> ( ( ( ( X - E ) ^ 4 ) + ( P x. ( ( X - E ) ^ 2 ) ) ) + ( ( Q x. ( X - E ) ) + R ) ) = 0 ) ) |
| 30 |
1 2 3 4 7 8 9
|
quart1cl |
|- ( ph -> ( P e. CC /\ Q e. CC /\ R e. CC ) ) |
| 31 |
30
|
simp1d |
|- ( ph -> P e. CC ) |
| 32 |
30
|
simp2d |
|- ( ph -> Q e. CC ) |
| 33 |
25
|
negcld |
|- ( ph -> -u ( A / 4 ) e. CC ) |
| 34 |
6 33
|
eqeltrd |
|- ( ph -> E e. CC ) |
| 35 |
5 34
|
subcld |
|- ( ph -> ( X - E ) e. CC ) |
| 36 |
1 2 3 4 1 6 7 8 9 10 11 12 13 14 15 16
|
quartlem3 |
|- ( ph -> ( S e. CC /\ M e. CC /\ T e. CC ) ) |
| 37 |
36
|
simp1d |
|- ( ph -> S e. CC ) |
| 38 |
13
|
oveq2d |
|- ( ph -> ( 2 x. S ) = ( 2 x. ( ( sqrt ` M ) / 2 ) ) ) |
| 39 |
36
|
simp2d |
|- ( ph -> M e. CC ) |
| 40 |
39
|
sqrtcld |
|- ( ph -> ( sqrt ` M ) e. CC ) |
| 41 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
| 42 |
|
2ne0 |
|- 2 =/= 0 |
| 43 |
42
|
a1i |
|- ( ph -> 2 =/= 0 ) |
| 44 |
40 41 43
|
divcan2d |
|- ( ph -> ( 2 x. ( ( sqrt ` M ) / 2 ) ) = ( sqrt ` M ) ) |
| 45 |
38 44
|
eqtrd |
|- ( ph -> ( 2 x. S ) = ( sqrt ` M ) ) |
| 46 |
45
|
oveq1d |
|- ( ph -> ( ( 2 x. S ) ^ 2 ) = ( ( sqrt ` M ) ^ 2 ) ) |
| 47 |
39
|
sqsqrtd |
|- ( ph -> ( ( sqrt ` M ) ^ 2 ) = M ) |
| 48 |
46 47
|
eqtr2d |
|- ( ph -> M = ( ( 2 x. S ) ^ 2 ) ) |
| 49 |
1 2 3 4 1 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
quartlem4 |
|- ( ph -> ( S =/= 0 /\ I e. CC /\ J e. CC ) ) |
| 50 |
49
|
simp2d |
|- ( ph -> I e. CC ) |
| 51 |
18
|
oveq1d |
|- ( ph -> ( I ^ 2 ) = ( ( sqrt ` ( ( -u ( S ^ 2 ) - ( P / 2 ) ) + ( ( Q / 4 ) / S ) ) ) ^ 2 ) ) |
| 52 |
37
|
sqcld |
|- ( ph -> ( S ^ 2 ) e. CC ) |
| 53 |
52
|
negcld |
|- ( ph -> -u ( S ^ 2 ) e. CC ) |
| 54 |
31
|
halfcld |
|- ( ph -> ( P / 2 ) e. CC ) |
| 55 |
53 54
|
subcld |
|- ( ph -> ( -u ( S ^ 2 ) - ( P / 2 ) ) e. CC ) |
| 56 |
32 22 24
|
divcld |
|- ( ph -> ( Q / 4 ) e. CC ) |
| 57 |
49
|
simp1d |
|- ( ph -> S =/= 0 ) |
| 58 |
56 37 57
|
divcld |
|- ( ph -> ( ( Q / 4 ) / S ) e. CC ) |
| 59 |
55 58
|
addcld |
|- ( ph -> ( ( -u ( S ^ 2 ) - ( P / 2 ) ) + ( ( Q / 4 ) / S ) ) e. CC ) |
| 60 |
59
|
sqsqrtd |
|- ( ph -> ( ( sqrt ` ( ( -u ( S ^ 2 ) - ( P / 2 ) ) + ( ( Q / 4 ) / S ) ) ) ^ 2 ) = ( ( -u ( S ^ 2 ) - ( P / 2 ) ) + ( ( Q / 4 ) / S ) ) ) |
| 61 |
51 60
|
eqtrd |
|- ( ph -> ( I ^ 2 ) = ( ( -u ( S ^ 2 ) - ( P / 2 ) ) + ( ( Q / 4 ) / S ) ) ) |
| 62 |
30
|
simp3d |
|- ( ph -> R e. CC ) |
| 63 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 64 |
|
3z |
|- 3 e. ZZ |
| 65 |
|
1exp |
|- ( 3 e. ZZ -> ( 1 ^ 3 ) = 1 ) |
| 66 |
64 65
|
mp1i |
|- ( ph -> ( 1 ^ 3 ) = 1 ) |
| 67 |
36
|
simp3d |
|- ( ph -> T e. CC ) |
| 68 |
67
|
mullidd |
|- ( ph -> ( 1 x. T ) = T ) |
| 69 |
68
|
oveq2d |
|- ( ph -> ( ( 2 x. P ) + ( 1 x. T ) ) = ( ( 2 x. P ) + T ) ) |
| 70 |
68
|
oveq2d |
|- ( ph -> ( U / ( 1 x. T ) ) = ( U / T ) ) |
| 71 |
69 70
|
oveq12d |
|- ( ph -> ( ( ( 2 x. P ) + ( 1 x. T ) ) + ( U / ( 1 x. T ) ) ) = ( ( ( 2 x. P ) + T ) + ( U / T ) ) ) |
| 72 |
71
|
oveq1d |
|- ( ph -> ( ( ( ( 2 x. P ) + ( 1 x. T ) ) + ( U / ( 1 x. T ) ) ) / 3 ) = ( ( ( ( 2 x. P ) + T ) + ( U / T ) ) / 3 ) ) |
| 73 |
72
|
negeqd |
|- ( ph -> -u ( ( ( ( 2 x. P ) + ( 1 x. T ) ) + ( U / ( 1 x. T ) ) ) / 3 ) = -u ( ( ( ( 2 x. P ) + T ) + ( U / T ) ) / 3 ) ) |
| 74 |
14 73
|
eqtr4d |
|- ( ph -> M = -u ( ( ( ( 2 x. P ) + ( 1 x. T ) ) + ( U / ( 1 x. T ) ) ) / 3 ) ) |
| 75 |
|
oveq1 |
|- ( x = 1 -> ( x ^ 3 ) = ( 1 ^ 3 ) ) |
| 76 |
75
|
eqeq1d |
|- ( x = 1 -> ( ( x ^ 3 ) = 1 <-> ( 1 ^ 3 ) = 1 ) ) |
| 77 |
|
oveq1 |
|- ( x = 1 -> ( x x. T ) = ( 1 x. T ) ) |
| 78 |
77
|
oveq2d |
|- ( x = 1 -> ( ( 2 x. P ) + ( x x. T ) ) = ( ( 2 x. P ) + ( 1 x. T ) ) ) |
| 79 |
77
|
oveq2d |
|- ( x = 1 -> ( U / ( x x. T ) ) = ( U / ( 1 x. T ) ) ) |
| 80 |
78 79
|
oveq12d |
|- ( x = 1 -> ( ( ( 2 x. P ) + ( x x. T ) ) + ( U / ( x x. T ) ) ) = ( ( ( 2 x. P ) + ( 1 x. T ) ) + ( U / ( 1 x. T ) ) ) ) |
| 81 |
80
|
oveq1d |
|- ( x = 1 -> ( ( ( ( 2 x. P ) + ( x x. T ) ) + ( U / ( x x. T ) ) ) / 3 ) = ( ( ( ( 2 x. P ) + ( 1 x. T ) ) + ( U / ( 1 x. T ) ) ) / 3 ) ) |
| 82 |
81
|
negeqd |
|- ( x = 1 -> -u ( ( ( ( 2 x. P ) + ( x x. T ) ) + ( U / ( x x. T ) ) ) / 3 ) = -u ( ( ( ( 2 x. P ) + ( 1 x. T ) ) + ( U / ( 1 x. T ) ) ) / 3 ) ) |
| 83 |
82
|
eqeq2d |
|- ( x = 1 -> ( M = -u ( ( ( ( 2 x. P ) + ( x x. T ) ) + ( U / ( x x. T ) ) ) / 3 ) <-> M = -u ( ( ( ( 2 x. P ) + ( 1 x. T ) ) + ( U / ( 1 x. T ) ) ) / 3 ) ) ) |
| 84 |
76 83
|
anbi12d |
|- ( x = 1 -> ( ( ( x ^ 3 ) = 1 /\ M = -u ( ( ( ( 2 x. P ) + ( x x. T ) ) + ( U / ( x x. T ) ) ) / 3 ) ) <-> ( ( 1 ^ 3 ) = 1 /\ M = -u ( ( ( ( 2 x. P ) + ( 1 x. T ) ) + ( U / ( 1 x. T ) ) ) / 3 ) ) ) ) |
| 85 |
84
|
rspcev |
|- ( ( 1 e. CC /\ ( ( 1 ^ 3 ) = 1 /\ M = -u ( ( ( ( 2 x. P ) + ( 1 x. T ) ) + ( U / ( 1 x. T ) ) ) / 3 ) ) ) -> E. x e. CC ( ( x ^ 3 ) = 1 /\ M = -u ( ( ( ( 2 x. P ) + ( x x. T ) ) + ( U / ( x x. T ) ) ) / 3 ) ) ) |
| 86 |
63 66 74 85
|
syl12anc |
|- ( ph -> E. x e. CC ( ( x ^ 3 ) = 1 /\ M = -u ( ( ( ( 2 x. P ) + ( x x. T ) ) + ( U / ( x x. T ) ) ) / 3 ) ) ) |
| 87 |
|
2cn |
|- 2 e. CC |
| 88 |
|
mulcl |
|- ( ( 2 e. CC /\ P e. CC ) -> ( 2 x. P ) e. CC ) |
| 89 |
87 31 88
|
sylancr |
|- ( ph -> ( 2 x. P ) e. CC ) |
| 90 |
31
|
sqcld |
|- ( ph -> ( P ^ 2 ) e. CC ) |
| 91 |
|
mulcl |
|- ( ( 4 e. CC /\ R e. CC ) -> ( 4 x. R ) e. CC ) |
| 92 |
21 62 91
|
sylancr |
|- ( ph -> ( 4 x. R ) e. CC ) |
| 93 |
90 92
|
subcld |
|- ( ph -> ( ( P ^ 2 ) - ( 4 x. R ) ) e. CC ) |
| 94 |
32
|
sqcld |
|- ( ph -> ( Q ^ 2 ) e. CC ) |
| 95 |
94
|
negcld |
|- ( ph -> -u ( Q ^ 2 ) e. CC ) |
| 96 |
15
|
oveq1d |
|- ( ph -> ( T ^ 3 ) = ( ( ( ( V + W ) / 2 ) ^c ( 1 / 3 ) ) ^ 3 ) ) |
| 97 |
1 2 3 4 1 6 7 8 9 10 11 12
|
quartlem2 |
|- ( ph -> ( U e. CC /\ V e. CC /\ W e. CC ) ) |
| 98 |
97
|
simp2d |
|- ( ph -> V e. CC ) |
| 99 |
97
|
simp3d |
|- ( ph -> W e. CC ) |
| 100 |
98 99
|
addcld |
|- ( ph -> ( V + W ) e. CC ) |
| 101 |
100
|
halfcld |
|- ( ph -> ( ( V + W ) / 2 ) e. CC ) |
| 102 |
|
3nn |
|- 3 e. NN |
| 103 |
|
cxproot |
|- ( ( ( ( V + W ) / 2 ) e. CC /\ 3 e. NN ) -> ( ( ( ( V + W ) / 2 ) ^c ( 1 / 3 ) ) ^ 3 ) = ( ( V + W ) / 2 ) ) |
| 104 |
101 102 103
|
sylancl |
|- ( ph -> ( ( ( ( V + W ) / 2 ) ^c ( 1 / 3 ) ) ^ 3 ) = ( ( V + W ) / 2 ) ) |
| 105 |
96 104
|
eqtrd |
|- ( ph -> ( T ^ 3 ) = ( ( V + W ) / 2 ) ) |
| 106 |
12
|
oveq1d |
|- ( ph -> ( W ^ 2 ) = ( ( sqrt ` ( ( V ^ 2 ) - ( 4 x. ( U ^ 3 ) ) ) ) ^ 2 ) ) |
| 107 |
98
|
sqcld |
|- ( ph -> ( V ^ 2 ) e. CC ) |
| 108 |
97
|
simp1d |
|- ( ph -> U e. CC ) |
| 109 |
|
3nn0 |
|- 3 e. NN0 |
| 110 |
|
expcl |
|- ( ( U e. CC /\ 3 e. NN0 ) -> ( U ^ 3 ) e. CC ) |
| 111 |
108 109 110
|
sylancl |
|- ( ph -> ( U ^ 3 ) e. CC ) |
| 112 |
|
mulcl |
|- ( ( 4 e. CC /\ ( U ^ 3 ) e. CC ) -> ( 4 x. ( U ^ 3 ) ) e. CC ) |
| 113 |
21 111 112
|
sylancr |
|- ( ph -> ( 4 x. ( U ^ 3 ) ) e. CC ) |
| 114 |
107 113
|
subcld |
|- ( ph -> ( ( V ^ 2 ) - ( 4 x. ( U ^ 3 ) ) ) e. CC ) |
| 115 |
114
|
sqsqrtd |
|- ( ph -> ( ( sqrt ` ( ( V ^ 2 ) - ( 4 x. ( U ^ 3 ) ) ) ) ^ 2 ) = ( ( V ^ 2 ) - ( 4 x. ( U ^ 3 ) ) ) ) |
| 116 |
106 115
|
eqtrd |
|- ( ph -> ( W ^ 2 ) = ( ( V ^ 2 ) - ( 4 x. ( U ^ 3 ) ) ) ) |
| 117 |
31 32 62 10 11
|
quartlem1 |
|- ( ph -> ( U = ( ( ( 2 x. P ) ^ 2 ) - ( 3 x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) /\ V = ( ( ( 2 x. ( ( 2 x. P ) ^ 3 ) ) - ( 9 x. ( ( 2 x. P ) x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) ) + ( ; 2 7 x. -u ( Q ^ 2 ) ) ) ) ) |
| 118 |
117
|
simpld |
|- ( ph -> U = ( ( ( 2 x. P ) ^ 2 ) - ( 3 x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) ) |
| 119 |
117
|
simprd |
|- ( ph -> V = ( ( ( 2 x. ( ( 2 x. P ) ^ 3 ) ) - ( 9 x. ( ( 2 x. P ) x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) ) + ( ; 2 7 x. -u ( Q ^ 2 ) ) ) ) |
| 120 |
89 93 95 39 67 105 99 116 118 119 16
|
mcubic |
|- ( ph -> ( ( ( ( M ^ 3 ) + ( ( 2 x. P ) x. ( M ^ 2 ) ) ) + ( ( ( ( P ^ 2 ) - ( 4 x. R ) ) x. M ) + -u ( Q ^ 2 ) ) ) = 0 <-> E. x e. CC ( ( x ^ 3 ) = 1 /\ M = -u ( ( ( ( 2 x. P ) + ( x x. T ) ) + ( U / ( x x. T ) ) ) / 3 ) ) ) ) |
| 121 |
86 120
|
mpbird |
|- ( ph -> ( ( ( M ^ 3 ) + ( ( 2 x. P ) x. ( M ^ 2 ) ) ) + ( ( ( ( P ^ 2 ) - ( 4 x. R ) ) x. M ) + -u ( Q ^ 2 ) ) ) = 0 ) |
| 122 |
49
|
simp3d |
|- ( ph -> J e. CC ) |
| 123 |
19
|
oveq1d |
|- ( ph -> ( J ^ 2 ) = ( ( sqrt ` ( ( -u ( S ^ 2 ) - ( P / 2 ) ) - ( ( Q / 4 ) / S ) ) ) ^ 2 ) ) |
| 124 |
55 58
|
subcld |
|- ( ph -> ( ( -u ( S ^ 2 ) - ( P / 2 ) ) - ( ( Q / 4 ) / S ) ) e. CC ) |
| 125 |
124
|
sqsqrtd |
|- ( ph -> ( ( sqrt ` ( ( -u ( S ^ 2 ) - ( P / 2 ) ) - ( ( Q / 4 ) / S ) ) ) ^ 2 ) = ( ( -u ( S ^ 2 ) - ( P / 2 ) ) - ( ( Q / 4 ) / S ) ) ) |
| 126 |
123 125
|
eqtrd |
|- ( ph -> ( J ^ 2 ) = ( ( -u ( S ^ 2 ) - ( P / 2 ) ) - ( ( Q / 4 ) / S ) ) ) |
| 127 |
31 32 35 37 48 17 50 61 62 121 122 126
|
dquart |
|- ( ph -> ( ( ( ( ( X - E ) ^ 4 ) + ( P x. ( ( X - E ) ^ 2 ) ) ) + ( ( Q x. ( X - E ) ) + R ) ) = 0 <-> ( ( ( X - E ) = ( -u S + I ) \/ ( X - E ) = ( -u S - I ) ) \/ ( ( X - E ) = ( S + J ) \/ ( X - E ) = ( S - J ) ) ) ) ) |
| 128 |
37
|
negcld |
|- ( ph -> -u S e. CC ) |
| 129 |
128 50
|
addcld |
|- ( ph -> ( -u S + I ) e. CC ) |
| 130 |
5 34 129
|
subaddd |
|- ( ph -> ( ( X - E ) = ( -u S + I ) <-> ( E + ( -u S + I ) ) = X ) ) |
| 131 |
34 37
|
negsubd |
|- ( ph -> ( E + -u S ) = ( E - S ) ) |
| 132 |
131
|
oveq1d |
|- ( ph -> ( ( E + -u S ) + I ) = ( ( E - S ) + I ) ) |
| 133 |
34 128 50
|
addassd |
|- ( ph -> ( ( E + -u S ) + I ) = ( E + ( -u S + I ) ) ) |
| 134 |
132 133
|
eqtr3d |
|- ( ph -> ( ( E - S ) + I ) = ( E + ( -u S + I ) ) ) |
| 135 |
134
|
eqeq1d |
|- ( ph -> ( ( ( E - S ) + I ) = X <-> ( E + ( -u S + I ) ) = X ) ) |
| 136 |
130 135
|
bitr4d |
|- ( ph -> ( ( X - E ) = ( -u S + I ) <-> ( ( E - S ) + I ) = X ) ) |
| 137 |
|
eqcom |
|- ( ( ( E - S ) + I ) = X <-> X = ( ( E - S ) + I ) ) |
| 138 |
136 137
|
bitrdi |
|- ( ph -> ( ( X - E ) = ( -u S + I ) <-> X = ( ( E - S ) + I ) ) ) |
| 139 |
128 50
|
subcld |
|- ( ph -> ( -u S - I ) e. CC ) |
| 140 |
5 34 139
|
subaddd |
|- ( ph -> ( ( X - E ) = ( -u S - I ) <-> ( E + ( -u S - I ) ) = X ) ) |
| 141 |
131
|
oveq1d |
|- ( ph -> ( ( E + -u S ) - I ) = ( ( E - S ) - I ) ) |
| 142 |
34 128 50
|
addsubassd |
|- ( ph -> ( ( E + -u S ) - I ) = ( E + ( -u S - I ) ) ) |
| 143 |
141 142
|
eqtr3d |
|- ( ph -> ( ( E - S ) - I ) = ( E + ( -u S - I ) ) ) |
| 144 |
143
|
eqeq1d |
|- ( ph -> ( ( ( E - S ) - I ) = X <-> ( E + ( -u S - I ) ) = X ) ) |
| 145 |
140 144
|
bitr4d |
|- ( ph -> ( ( X - E ) = ( -u S - I ) <-> ( ( E - S ) - I ) = X ) ) |
| 146 |
|
eqcom |
|- ( ( ( E - S ) - I ) = X <-> X = ( ( E - S ) - I ) ) |
| 147 |
145 146
|
bitrdi |
|- ( ph -> ( ( X - E ) = ( -u S - I ) <-> X = ( ( E - S ) - I ) ) ) |
| 148 |
138 147
|
orbi12d |
|- ( ph -> ( ( ( X - E ) = ( -u S + I ) \/ ( X - E ) = ( -u S - I ) ) <-> ( X = ( ( E - S ) + I ) \/ X = ( ( E - S ) - I ) ) ) ) |
| 149 |
37 122
|
addcld |
|- ( ph -> ( S + J ) e. CC ) |
| 150 |
5 34 149
|
subaddd |
|- ( ph -> ( ( X - E ) = ( S + J ) <-> ( E + ( S + J ) ) = X ) ) |
| 151 |
34 37 122
|
addassd |
|- ( ph -> ( ( E + S ) + J ) = ( E + ( S + J ) ) ) |
| 152 |
151
|
eqeq1d |
|- ( ph -> ( ( ( E + S ) + J ) = X <-> ( E + ( S + J ) ) = X ) ) |
| 153 |
150 152
|
bitr4d |
|- ( ph -> ( ( X - E ) = ( S + J ) <-> ( ( E + S ) + J ) = X ) ) |
| 154 |
|
eqcom |
|- ( ( ( E + S ) + J ) = X <-> X = ( ( E + S ) + J ) ) |
| 155 |
153 154
|
bitrdi |
|- ( ph -> ( ( X - E ) = ( S + J ) <-> X = ( ( E + S ) + J ) ) ) |
| 156 |
37 122
|
subcld |
|- ( ph -> ( S - J ) e. CC ) |
| 157 |
5 34 156
|
subaddd |
|- ( ph -> ( ( X - E ) = ( S - J ) <-> ( E + ( S - J ) ) = X ) ) |
| 158 |
34 37 122
|
addsubassd |
|- ( ph -> ( ( E + S ) - J ) = ( E + ( S - J ) ) ) |
| 159 |
158
|
eqeq1d |
|- ( ph -> ( ( ( E + S ) - J ) = X <-> ( E + ( S - J ) ) = X ) ) |
| 160 |
157 159
|
bitr4d |
|- ( ph -> ( ( X - E ) = ( S - J ) <-> ( ( E + S ) - J ) = X ) ) |
| 161 |
|
eqcom |
|- ( ( ( E + S ) - J ) = X <-> X = ( ( E + S ) - J ) ) |
| 162 |
160 161
|
bitrdi |
|- ( ph -> ( ( X - E ) = ( S - J ) <-> X = ( ( E + S ) - J ) ) ) |
| 163 |
155 162
|
orbi12d |
|- ( ph -> ( ( ( X - E ) = ( S + J ) \/ ( X - E ) = ( S - J ) ) <-> ( X = ( ( E + S ) + J ) \/ X = ( ( E + S ) - J ) ) ) ) |
| 164 |
148 163
|
orbi12d |
|- ( ph -> ( ( ( ( X - E ) = ( -u S + I ) \/ ( X - E ) = ( -u S - I ) ) \/ ( ( X - E ) = ( S + J ) \/ ( X - E ) = ( S - J ) ) ) <-> ( ( X = ( ( E - S ) + I ) \/ X = ( ( E - S ) - I ) ) \/ ( X = ( ( E + S ) + J ) \/ X = ( ( E + S ) - J ) ) ) ) ) |
| 165 |
29 127 164
|
3bitrd |
|- ( ph -> ( ( ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) + ( ( B x. ( X ^ 2 ) ) + ( ( C x. X ) + D ) ) ) = 0 <-> ( ( X = ( ( E - S ) + I ) \/ X = ( ( E - S ) - I ) ) \/ ( X = ( ( E + S ) + J ) \/ X = ( ( E + S ) - J ) ) ) ) ) |