| Step |
Hyp |
Ref |
Expression |
| 1 |
|
quartlem1.p |
|- ( ph -> P e. CC ) |
| 2 |
|
quartlem1.q |
|- ( ph -> Q e. CC ) |
| 3 |
|
quartlem1.r |
|- ( ph -> R e. CC ) |
| 4 |
|
quartlem1.u |
|- ( ph -> U = ( ( P ^ 2 ) + ( ; 1 2 x. R ) ) ) |
| 5 |
|
quartlem1.v |
|- ( ph -> V = ( ( -u ( 2 x. ( P ^ 3 ) ) - ( ; 2 7 x. ( Q ^ 2 ) ) ) + ( ; 7 2 x. ( P x. R ) ) ) ) |
| 6 |
|
2cn |
|- 2 e. CC |
| 7 |
|
sqmul |
|- ( ( 2 e. CC /\ P e. CC ) -> ( ( 2 x. P ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( P ^ 2 ) ) ) |
| 8 |
6 1 7
|
sylancr |
|- ( ph -> ( ( 2 x. P ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( P ^ 2 ) ) ) |
| 9 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
| 10 |
9
|
oveq1i |
|- ( ( 2 ^ 2 ) x. ( P ^ 2 ) ) = ( 4 x. ( P ^ 2 ) ) |
| 11 |
8 10
|
eqtrdi |
|- ( ph -> ( ( 2 x. P ) ^ 2 ) = ( 4 x. ( P ^ 2 ) ) ) |
| 12 |
11
|
oveq1d |
|- ( ph -> ( ( ( 2 x. P ) ^ 2 ) - ( 3 x. ( P ^ 2 ) ) ) = ( ( 4 x. ( P ^ 2 ) ) - ( 3 x. ( P ^ 2 ) ) ) ) |
| 13 |
|
4cn |
|- 4 e. CC |
| 14 |
13
|
a1i |
|- ( ph -> 4 e. CC ) |
| 15 |
|
3cn |
|- 3 e. CC |
| 16 |
15
|
a1i |
|- ( ph -> 3 e. CC ) |
| 17 |
1
|
sqcld |
|- ( ph -> ( P ^ 2 ) e. CC ) |
| 18 |
14 16 17
|
subdird |
|- ( ph -> ( ( 4 - 3 ) x. ( P ^ 2 ) ) = ( ( 4 x. ( P ^ 2 ) ) - ( 3 x. ( P ^ 2 ) ) ) ) |
| 19 |
12 18
|
eqtr4d |
|- ( ph -> ( ( ( 2 x. P ) ^ 2 ) - ( 3 x. ( P ^ 2 ) ) ) = ( ( 4 - 3 ) x. ( P ^ 2 ) ) ) |
| 20 |
|
ax-1cn |
|- 1 e. CC |
| 21 |
|
3p1e4 |
|- ( 3 + 1 ) = 4 |
| 22 |
13 15 20 21
|
subaddrii |
|- ( 4 - 3 ) = 1 |
| 23 |
22
|
oveq1i |
|- ( ( 4 - 3 ) x. ( P ^ 2 ) ) = ( 1 x. ( P ^ 2 ) ) |
| 24 |
|
mullid |
|- ( ( P ^ 2 ) e. CC -> ( 1 x. ( P ^ 2 ) ) = ( P ^ 2 ) ) |
| 25 |
23 24
|
eqtrid |
|- ( ( P ^ 2 ) e. CC -> ( ( 4 - 3 ) x. ( P ^ 2 ) ) = ( P ^ 2 ) ) |
| 26 |
17 25
|
syl |
|- ( ph -> ( ( 4 - 3 ) x. ( P ^ 2 ) ) = ( P ^ 2 ) ) |
| 27 |
19 26
|
eqtr2d |
|- ( ph -> ( P ^ 2 ) = ( ( ( 2 x. P ) ^ 2 ) - ( 3 x. ( P ^ 2 ) ) ) ) |
| 28 |
27
|
oveq1d |
|- ( ph -> ( ( P ^ 2 ) + ( ; 1 2 x. R ) ) = ( ( ( ( 2 x. P ) ^ 2 ) - ( 3 x. ( P ^ 2 ) ) ) + ( ; 1 2 x. R ) ) ) |
| 29 |
|
mulcl |
|- ( ( 2 e. CC /\ P e. CC ) -> ( 2 x. P ) e. CC ) |
| 30 |
6 1 29
|
sylancr |
|- ( ph -> ( 2 x. P ) e. CC ) |
| 31 |
30
|
sqcld |
|- ( ph -> ( ( 2 x. P ) ^ 2 ) e. CC ) |
| 32 |
|
mulcl |
|- ( ( 3 e. CC /\ ( P ^ 2 ) e. CC ) -> ( 3 x. ( P ^ 2 ) ) e. CC ) |
| 33 |
15 17 32
|
sylancr |
|- ( ph -> ( 3 x. ( P ^ 2 ) ) e. CC ) |
| 34 |
|
1nn0 |
|- 1 e. NN0 |
| 35 |
|
2nn |
|- 2 e. NN |
| 36 |
34 35
|
decnncl |
|- ; 1 2 e. NN |
| 37 |
36
|
nncni |
|- ; 1 2 e. CC |
| 38 |
|
mulcl |
|- ( ( ; 1 2 e. CC /\ R e. CC ) -> ( ; 1 2 x. R ) e. CC ) |
| 39 |
37 3 38
|
sylancr |
|- ( ph -> ( ; 1 2 x. R ) e. CC ) |
| 40 |
31 33 39
|
subsubd |
|- ( ph -> ( ( ( 2 x. P ) ^ 2 ) - ( ( 3 x. ( P ^ 2 ) ) - ( ; 1 2 x. R ) ) ) = ( ( ( ( 2 x. P ) ^ 2 ) - ( 3 x. ( P ^ 2 ) ) ) + ( ; 1 2 x. R ) ) ) |
| 41 |
28 40
|
eqtr4d |
|- ( ph -> ( ( P ^ 2 ) + ( ; 1 2 x. R ) ) = ( ( ( 2 x. P ) ^ 2 ) - ( ( 3 x. ( P ^ 2 ) ) - ( ; 1 2 x. R ) ) ) ) |
| 42 |
|
mulcl |
|- ( ( 4 e. CC /\ R e. CC ) -> ( 4 x. R ) e. CC ) |
| 43 |
13 3 42
|
sylancr |
|- ( ph -> ( 4 x. R ) e. CC ) |
| 44 |
16 17 43
|
subdid |
|- ( ph -> ( 3 x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) = ( ( 3 x. ( P ^ 2 ) ) - ( 3 x. ( 4 x. R ) ) ) ) |
| 45 |
|
4t3e12 |
|- ( 4 x. 3 ) = ; 1 2 |
| 46 |
13 15 45
|
mulcomli |
|- ( 3 x. 4 ) = ; 1 2 |
| 47 |
46
|
oveq1i |
|- ( ( 3 x. 4 ) x. R ) = ( ; 1 2 x. R ) |
| 48 |
16 14 3
|
mulassd |
|- ( ph -> ( ( 3 x. 4 ) x. R ) = ( 3 x. ( 4 x. R ) ) ) |
| 49 |
47 48
|
eqtr3id |
|- ( ph -> ( ; 1 2 x. R ) = ( 3 x. ( 4 x. R ) ) ) |
| 50 |
49
|
oveq2d |
|- ( ph -> ( ( 3 x. ( P ^ 2 ) ) - ( ; 1 2 x. R ) ) = ( ( 3 x. ( P ^ 2 ) ) - ( 3 x. ( 4 x. R ) ) ) ) |
| 51 |
44 50
|
eqtr4d |
|- ( ph -> ( 3 x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) = ( ( 3 x. ( P ^ 2 ) ) - ( ; 1 2 x. R ) ) ) |
| 52 |
51
|
oveq2d |
|- ( ph -> ( ( ( 2 x. P ) ^ 2 ) - ( 3 x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) = ( ( ( 2 x. P ) ^ 2 ) - ( ( 3 x. ( P ^ 2 ) ) - ( ; 1 2 x. R ) ) ) ) |
| 53 |
41 4 52
|
3eqtr4d |
|- ( ph -> U = ( ( ( 2 x. P ) ^ 2 ) - ( 3 x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) ) |
| 54 |
6
|
a1i |
|- ( ph -> 2 e. CC ) |
| 55 |
|
3nn0 |
|- 3 e. NN0 |
| 56 |
55
|
a1i |
|- ( ph -> 3 e. NN0 ) |
| 57 |
54 1 56
|
mulexpd |
|- ( ph -> ( ( 2 x. P ) ^ 3 ) = ( ( 2 ^ 3 ) x. ( P ^ 3 ) ) ) |
| 58 |
|
cu2 |
|- ( 2 ^ 3 ) = 8 |
| 59 |
58
|
oveq1i |
|- ( ( 2 ^ 3 ) x. ( P ^ 3 ) ) = ( 8 x. ( P ^ 3 ) ) |
| 60 |
57 59
|
eqtrdi |
|- ( ph -> ( ( 2 x. P ) ^ 3 ) = ( 8 x. ( P ^ 3 ) ) ) |
| 61 |
60
|
oveq2d |
|- ( ph -> ( 2 x. ( ( 2 x. P ) ^ 3 ) ) = ( 2 x. ( 8 x. ( P ^ 3 ) ) ) ) |
| 62 |
|
8cn |
|- 8 e. CC |
| 63 |
62
|
a1i |
|- ( ph -> 8 e. CC ) |
| 64 |
|
expcl |
|- ( ( P e. CC /\ 3 e. NN0 ) -> ( P ^ 3 ) e. CC ) |
| 65 |
1 55 64
|
sylancl |
|- ( ph -> ( P ^ 3 ) e. CC ) |
| 66 |
54 63 65
|
mul12d |
|- ( ph -> ( 2 x. ( 8 x. ( P ^ 3 ) ) ) = ( 8 x. ( 2 x. ( P ^ 3 ) ) ) ) |
| 67 |
61 66
|
eqtrd |
|- ( ph -> ( 2 x. ( ( 2 x. P ) ^ 3 ) ) = ( 8 x. ( 2 x. ( P ^ 3 ) ) ) ) |
| 68 |
|
9cn |
|- 9 e. CC |
| 69 |
68
|
a1i |
|- ( ph -> 9 e. CC ) |
| 70 |
|
mulcl |
|- ( ( 2 e. CC /\ ( P ^ 3 ) e. CC ) -> ( 2 x. ( P ^ 3 ) ) e. CC ) |
| 71 |
6 65 70
|
sylancr |
|- ( ph -> ( 2 x. ( P ^ 3 ) ) e. CC ) |
| 72 |
1 3
|
mulcld |
|- ( ph -> ( P x. R ) e. CC ) |
| 73 |
|
mulcl |
|- ( ( 8 e. CC /\ ( P x. R ) e. CC ) -> ( 8 x. ( P x. R ) ) e. CC ) |
| 74 |
62 72 73
|
sylancr |
|- ( ph -> ( 8 x. ( P x. R ) ) e. CC ) |
| 75 |
69 71 74
|
subdid |
|- ( ph -> ( 9 x. ( ( 2 x. ( P ^ 3 ) ) - ( 8 x. ( P x. R ) ) ) ) = ( ( 9 x. ( 2 x. ( P ^ 3 ) ) ) - ( 9 x. ( 8 x. ( P x. R ) ) ) ) ) |
| 76 |
30 17 43
|
subdid |
|- ( ph -> ( ( 2 x. P ) x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) = ( ( ( 2 x. P ) x. ( P ^ 2 ) ) - ( ( 2 x. P ) x. ( 4 x. R ) ) ) ) |
| 77 |
54 1 17
|
mulassd |
|- ( ph -> ( ( 2 x. P ) x. ( P ^ 2 ) ) = ( 2 x. ( P x. ( P ^ 2 ) ) ) ) |
| 78 |
1 17
|
mulcomd |
|- ( ph -> ( P x. ( P ^ 2 ) ) = ( ( P ^ 2 ) x. P ) ) |
| 79 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
| 80 |
79
|
oveq2i |
|- ( P ^ 3 ) = ( P ^ ( 2 + 1 ) ) |
| 81 |
|
2nn0 |
|- 2 e. NN0 |
| 82 |
|
expp1 |
|- ( ( P e. CC /\ 2 e. NN0 ) -> ( P ^ ( 2 + 1 ) ) = ( ( P ^ 2 ) x. P ) ) |
| 83 |
1 81 82
|
sylancl |
|- ( ph -> ( P ^ ( 2 + 1 ) ) = ( ( P ^ 2 ) x. P ) ) |
| 84 |
80 83
|
eqtrid |
|- ( ph -> ( P ^ 3 ) = ( ( P ^ 2 ) x. P ) ) |
| 85 |
78 84
|
eqtr4d |
|- ( ph -> ( P x. ( P ^ 2 ) ) = ( P ^ 3 ) ) |
| 86 |
85
|
oveq2d |
|- ( ph -> ( 2 x. ( P x. ( P ^ 2 ) ) ) = ( 2 x. ( P ^ 3 ) ) ) |
| 87 |
77 86
|
eqtrd |
|- ( ph -> ( ( 2 x. P ) x. ( P ^ 2 ) ) = ( 2 x. ( P ^ 3 ) ) ) |
| 88 |
54 1 14 3
|
mul4d |
|- ( ph -> ( ( 2 x. P ) x. ( 4 x. R ) ) = ( ( 2 x. 4 ) x. ( P x. R ) ) ) |
| 89 |
|
4t2e8 |
|- ( 4 x. 2 ) = 8 |
| 90 |
13 6 89
|
mulcomli |
|- ( 2 x. 4 ) = 8 |
| 91 |
90
|
oveq1i |
|- ( ( 2 x. 4 ) x. ( P x. R ) ) = ( 8 x. ( P x. R ) ) |
| 92 |
88 91
|
eqtrdi |
|- ( ph -> ( ( 2 x. P ) x. ( 4 x. R ) ) = ( 8 x. ( P x. R ) ) ) |
| 93 |
87 92
|
oveq12d |
|- ( ph -> ( ( ( 2 x. P ) x. ( P ^ 2 ) ) - ( ( 2 x. P ) x. ( 4 x. R ) ) ) = ( ( 2 x. ( P ^ 3 ) ) - ( 8 x. ( P x. R ) ) ) ) |
| 94 |
76 93
|
eqtrd |
|- ( ph -> ( ( 2 x. P ) x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) = ( ( 2 x. ( P ^ 3 ) ) - ( 8 x. ( P x. R ) ) ) ) |
| 95 |
94
|
oveq2d |
|- ( ph -> ( 9 x. ( ( 2 x. P ) x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) = ( 9 x. ( ( 2 x. ( P ^ 3 ) ) - ( 8 x. ( P x. R ) ) ) ) ) |
| 96 |
|
9t8e72 |
|- ( 9 x. 8 ) = ; 7 2 |
| 97 |
96
|
oveq1i |
|- ( ( 9 x. 8 ) x. ( P x. R ) ) = ( ; 7 2 x. ( P x. R ) ) |
| 98 |
69 63 72
|
mulassd |
|- ( ph -> ( ( 9 x. 8 ) x. ( P x. R ) ) = ( 9 x. ( 8 x. ( P x. R ) ) ) ) |
| 99 |
97 98
|
eqtr3id |
|- ( ph -> ( ; 7 2 x. ( P x. R ) ) = ( 9 x. ( 8 x. ( P x. R ) ) ) ) |
| 100 |
99
|
oveq2d |
|- ( ph -> ( ( 9 x. ( 2 x. ( P ^ 3 ) ) ) - ( ; 7 2 x. ( P x. R ) ) ) = ( ( 9 x. ( 2 x. ( P ^ 3 ) ) ) - ( 9 x. ( 8 x. ( P x. R ) ) ) ) ) |
| 101 |
75 95 100
|
3eqtr4d |
|- ( ph -> ( 9 x. ( ( 2 x. P ) x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) = ( ( 9 x. ( 2 x. ( P ^ 3 ) ) ) - ( ; 7 2 x. ( P x. R ) ) ) ) |
| 102 |
67 101
|
oveq12d |
|- ( ph -> ( ( 2 x. ( ( 2 x. P ) ^ 3 ) ) - ( 9 x. ( ( 2 x. P ) x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) ) = ( ( 8 x. ( 2 x. ( P ^ 3 ) ) ) - ( ( 9 x. ( 2 x. ( P ^ 3 ) ) ) - ( ; 7 2 x. ( P x. R ) ) ) ) ) |
| 103 |
|
mulcl |
|- ( ( 8 e. CC /\ ( 2 x. ( P ^ 3 ) ) e. CC ) -> ( 8 x. ( 2 x. ( P ^ 3 ) ) ) e. CC ) |
| 104 |
62 71 103
|
sylancr |
|- ( ph -> ( 8 x. ( 2 x. ( P ^ 3 ) ) ) e. CC ) |
| 105 |
|
mulcl |
|- ( ( 9 e. CC /\ ( 2 x. ( P ^ 3 ) ) e. CC ) -> ( 9 x. ( 2 x. ( P ^ 3 ) ) ) e. CC ) |
| 106 |
68 71 105
|
sylancr |
|- ( ph -> ( 9 x. ( 2 x. ( P ^ 3 ) ) ) e. CC ) |
| 107 |
|
7nn0 |
|- 7 e. NN0 |
| 108 |
107 35
|
decnncl |
|- ; 7 2 e. NN |
| 109 |
108
|
nncni |
|- ; 7 2 e. CC |
| 110 |
|
mulcl |
|- ( ( ; 7 2 e. CC /\ ( P x. R ) e. CC ) -> ( ; 7 2 x. ( P x. R ) ) e. CC ) |
| 111 |
109 72 110
|
sylancr |
|- ( ph -> ( ; 7 2 x. ( P x. R ) ) e. CC ) |
| 112 |
104 106 111
|
subsubd |
|- ( ph -> ( ( 8 x. ( 2 x. ( P ^ 3 ) ) ) - ( ( 9 x. ( 2 x. ( P ^ 3 ) ) ) - ( ; 7 2 x. ( P x. R ) ) ) ) = ( ( ( 8 x. ( 2 x. ( P ^ 3 ) ) ) - ( 9 x. ( 2 x. ( P ^ 3 ) ) ) ) + ( ; 7 2 x. ( P x. R ) ) ) ) |
| 113 |
106 104
|
negsubdi2d |
|- ( ph -> -u ( ( 9 x. ( 2 x. ( P ^ 3 ) ) ) - ( 8 x. ( 2 x. ( P ^ 3 ) ) ) ) = ( ( 8 x. ( 2 x. ( P ^ 3 ) ) ) - ( 9 x. ( 2 x. ( P ^ 3 ) ) ) ) ) |
| 114 |
69 63 71
|
subdird |
|- ( ph -> ( ( 9 - 8 ) x. ( 2 x. ( P ^ 3 ) ) ) = ( ( 9 x. ( 2 x. ( P ^ 3 ) ) ) - ( 8 x. ( 2 x. ( P ^ 3 ) ) ) ) ) |
| 115 |
|
8p1e9 |
|- ( 8 + 1 ) = 9 |
| 116 |
68 62 20 115
|
subaddrii |
|- ( 9 - 8 ) = 1 |
| 117 |
116
|
oveq1i |
|- ( ( 9 - 8 ) x. ( 2 x. ( P ^ 3 ) ) ) = ( 1 x. ( 2 x. ( P ^ 3 ) ) ) |
| 118 |
71
|
mullidd |
|- ( ph -> ( 1 x. ( 2 x. ( P ^ 3 ) ) ) = ( 2 x. ( P ^ 3 ) ) ) |
| 119 |
117 118
|
eqtrid |
|- ( ph -> ( ( 9 - 8 ) x. ( 2 x. ( P ^ 3 ) ) ) = ( 2 x. ( P ^ 3 ) ) ) |
| 120 |
114 119
|
eqtr3d |
|- ( ph -> ( ( 9 x. ( 2 x. ( P ^ 3 ) ) ) - ( 8 x. ( 2 x. ( P ^ 3 ) ) ) ) = ( 2 x. ( P ^ 3 ) ) ) |
| 121 |
120
|
negeqd |
|- ( ph -> -u ( ( 9 x. ( 2 x. ( P ^ 3 ) ) ) - ( 8 x. ( 2 x. ( P ^ 3 ) ) ) ) = -u ( 2 x. ( P ^ 3 ) ) ) |
| 122 |
113 121
|
eqtr3d |
|- ( ph -> ( ( 8 x. ( 2 x. ( P ^ 3 ) ) ) - ( 9 x. ( 2 x. ( P ^ 3 ) ) ) ) = -u ( 2 x. ( P ^ 3 ) ) ) |
| 123 |
122
|
oveq1d |
|- ( ph -> ( ( ( 8 x. ( 2 x. ( P ^ 3 ) ) ) - ( 9 x. ( 2 x. ( P ^ 3 ) ) ) ) + ( ; 7 2 x. ( P x. R ) ) ) = ( -u ( 2 x. ( P ^ 3 ) ) + ( ; 7 2 x. ( P x. R ) ) ) ) |
| 124 |
102 112 123
|
3eqtrd |
|- ( ph -> ( ( 2 x. ( ( 2 x. P ) ^ 3 ) ) - ( 9 x. ( ( 2 x. P ) x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) ) = ( -u ( 2 x. ( P ^ 3 ) ) + ( ; 7 2 x. ( P x. R ) ) ) ) |
| 125 |
|
7nn |
|- 7 e. NN |
| 126 |
81 125
|
decnncl |
|- ; 2 7 e. NN |
| 127 |
126
|
nncni |
|- ; 2 7 e. CC |
| 128 |
2
|
sqcld |
|- ( ph -> ( Q ^ 2 ) e. CC ) |
| 129 |
|
mulneg2 |
|- ( ( ; 2 7 e. CC /\ ( Q ^ 2 ) e. CC ) -> ( ; 2 7 x. -u ( Q ^ 2 ) ) = -u ( ; 2 7 x. ( Q ^ 2 ) ) ) |
| 130 |
127 128 129
|
sylancr |
|- ( ph -> ( ; 2 7 x. -u ( Q ^ 2 ) ) = -u ( ; 2 7 x. ( Q ^ 2 ) ) ) |
| 131 |
124 130
|
oveq12d |
|- ( ph -> ( ( ( 2 x. ( ( 2 x. P ) ^ 3 ) ) - ( 9 x. ( ( 2 x. P ) x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) ) + ( ; 2 7 x. -u ( Q ^ 2 ) ) ) = ( ( -u ( 2 x. ( P ^ 3 ) ) + ( ; 7 2 x. ( P x. R ) ) ) + -u ( ; 2 7 x. ( Q ^ 2 ) ) ) ) |
| 132 |
71
|
negcld |
|- ( ph -> -u ( 2 x. ( P ^ 3 ) ) e. CC ) |
| 133 |
|
mulcl |
|- ( ( ; 2 7 e. CC /\ ( Q ^ 2 ) e. CC ) -> ( ; 2 7 x. ( Q ^ 2 ) ) e. CC ) |
| 134 |
127 128 133
|
sylancr |
|- ( ph -> ( ; 2 7 x. ( Q ^ 2 ) ) e. CC ) |
| 135 |
132 111 134
|
addsubd |
|- ( ph -> ( ( -u ( 2 x. ( P ^ 3 ) ) + ( ; 7 2 x. ( P x. R ) ) ) - ( ; 2 7 x. ( Q ^ 2 ) ) ) = ( ( -u ( 2 x. ( P ^ 3 ) ) - ( ; 2 7 x. ( Q ^ 2 ) ) ) + ( ; 7 2 x. ( P x. R ) ) ) ) |
| 136 |
132 111
|
addcld |
|- ( ph -> ( -u ( 2 x. ( P ^ 3 ) ) + ( ; 7 2 x. ( P x. R ) ) ) e. CC ) |
| 137 |
136 134
|
negsubd |
|- ( ph -> ( ( -u ( 2 x. ( P ^ 3 ) ) + ( ; 7 2 x. ( P x. R ) ) ) + -u ( ; 2 7 x. ( Q ^ 2 ) ) ) = ( ( -u ( 2 x. ( P ^ 3 ) ) + ( ; 7 2 x. ( P x. R ) ) ) - ( ; 2 7 x. ( Q ^ 2 ) ) ) ) |
| 138 |
135 137 5
|
3eqtr4d |
|- ( ph -> ( ( -u ( 2 x. ( P ^ 3 ) ) + ( ; 7 2 x. ( P x. R ) ) ) + -u ( ; 2 7 x. ( Q ^ 2 ) ) ) = V ) |
| 139 |
131 138
|
eqtr2d |
|- ( ph -> V = ( ( ( 2 x. ( ( 2 x. P ) ^ 3 ) ) - ( 9 x. ( ( 2 x. P ) x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) ) + ( ; 2 7 x. -u ( Q ^ 2 ) ) ) ) |
| 140 |
53 139
|
jca |
|- ( ph -> ( U = ( ( ( 2 x. P ) ^ 2 ) - ( 3 x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) /\ V = ( ( ( 2 x. ( ( 2 x. P ) ^ 3 ) ) - ( 9 x. ( ( 2 x. P ) x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) ) + ( ; 2 7 x. -u ( Q ^ 2 ) ) ) ) ) |