| Step | Hyp | Ref | Expression | 
						
							| 1 |  | quartlem1.p |  |-  ( ph -> P e. CC ) | 
						
							| 2 |  | quartlem1.q |  |-  ( ph -> Q e. CC ) | 
						
							| 3 |  | quartlem1.r |  |-  ( ph -> R e. CC ) | 
						
							| 4 |  | quartlem1.u |  |-  ( ph -> U = ( ( P ^ 2 ) + ( ; 1 2 x. R ) ) ) | 
						
							| 5 |  | quartlem1.v |  |-  ( ph -> V = ( ( -u ( 2 x. ( P ^ 3 ) ) - ( ; 2 7 x. ( Q ^ 2 ) ) ) + ( ; 7 2 x. ( P x. R ) ) ) ) | 
						
							| 6 |  | 2cn |  |-  2 e. CC | 
						
							| 7 |  | sqmul |  |-  ( ( 2 e. CC /\ P e. CC ) -> ( ( 2 x. P ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( P ^ 2 ) ) ) | 
						
							| 8 | 6 1 7 | sylancr |  |-  ( ph -> ( ( 2 x. P ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( P ^ 2 ) ) ) | 
						
							| 9 |  | sq2 |  |-  ( 2 ^ 2 ) = 4 | 
						
							| 10 | 9 | oveq1i |  |-  ( ( 2 ^ 2 ) x. ( P ^ 2 ) ) = ( 4 x. ( P ^ 2 ) ) | 
						
							| 11 | 8 10 | eqtrdi |  |-  ( ph -> ( ( 2 x. P ) ^ 2 ) = ( 4 x. ( P ^ 2 ) ) ) | 
						
							| 12 | 11 | oveq1d |  |-  ( ph -> ( ( ( 2 x. P ) ^ 2 ) - ( 3 x. ( P ^ 2 ) ) ) = ( ( 4 x. ( P ^ 2 ) ) - ( 3 x. ( P ^ 2 ) ) ) ) | 
						
							| 13 |  | 4cn |  |-  4 e. CC | 
						
							| 14 | 13 | a1i |  |-  ( ph -> 4 e. CC ) | 
						
							| 15 |  | 3cn |  |-  3 e. CC | 
						
							| 16 | 15 | a1i |  |-  ( ph -> 3 e. CC ) | 
						
							| 17 | 1 | sqcld |  |-  ( ph -> ( P ^ 2 ) e. CC ) | 
						
							| 18 | 14 16 17 | subdird |  |-  ( ph -> ( ( 4 - 3 ) x. ( P ^ 2 ) ) = ( ( 4 x. ( P ^ 2 ) ) - ( 3 x. ( P ^ 2 ) ) ) ) | 
						
							| 19 | 12 18 | eqtr4d |  |-  ( ph -> ( ( ( 2 x. P ) ^ 2 ) - ( 3 x. ( P ^ 2 ) ) ) = ( ( 4 - 3 ) x. ( P ^ 2 ) ) ) | 
						
							| 20 |  | ax-1cn |  |-  1 e. CC | 
						
							| 21 |  | 3p1e4 |  |-  ( 3 + 1 ) = 4 | 
						
							| 22 | 13 15 20 21 | subaddrii |  |-  ( 4 - 3 ) = 1 | 
						
							| 23 | 22 | oveq1i |  |-  ( ( 4 - 3 ) x. ( P ^ 2 ) ) = ( 1 x. ( P ^ 2 ) ) | 
						
							| 24 |  | mullid |  |-  ( ( P ^ 2 ) e. CC -> ( 1 x. ( P ^ 2 ) ) = ( P ^ 2 ) ) | 
						
							| 25 | 23 24 | eqtrid |  |-  ( ( P ^ 2 ) e. CC -> ( ( 4 - 3 ) x. ( P ^ 2 ) ) = ( P ^ 2 ) ) | 
						
							| 26 | 17 25 | syl |  |-  ( ph -> ( ( 4 - 3 ) x. ( P ^ 2 ) ) = ( P ^ 2 ) ) | 
						
							| 27 | 19 26 | eqtr2d |  |-  ( ph -> ( P ^ 2 ) = ( ( ( 2 x. P ) ^ 2 ) - ( 3 x. ( P ^ 2 ) ) ) ) | 
						
							| 28 | 27 | oveq1d |  |-  ( ph -> ( ( P ^ 2 ) + ( ; 1 2 x. R ) ) = ( ( ( ( 2 x. P ) ^ 2 ) - ( 3 x. ( P ^ 2 ) ) ) + ( ; 1 2 x. R ) ) ) | 
						
							| 29 |  | mulcl |  |-  ( ( 2 e. CC /\ P e. CC ) -> ( 2 x. P ) e. CC ) | 
						
							| 30 | 6 1 29 | sylancr |  |-  ( ph -> ( 2 x. P ) e. CC ) | 
						
							| 31 | 30 | sqcld |  |-  ( ph -> ( ( 2 x. P ) ^ 2 ) e. CC ) | 
						
							| 32 |  | mulcl |  |-  ( ( 3 e. CC /\ ( P ^ 2 ) e. CC ) -> ( 3 x. ( P ^ 2 ) ) e. CC ) | 
						
							| 33 | 15 17 32 | sylancr |  |-  ( ph -> ( 3 x. ( P ^ 2 ) ) e. CC ) | 
						
							| 34 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 35 |  | 2nn |  |-  2 e. NN | 
						
							| 36 | 34 35 | decnncl |  |-  ; 1 2 e. NN | 
						
							| 37 | 36 | nncni |  |-  ; 1 2 e. CC | 
						
							| 38 |  | mulcl |  |-  ( ( ; 1 2 e. CC /\ R e. CC ) -> ( ; 1 2 x. R ) e. CC ) | 
						
							| 39 | 37 3 38 | sylancr |  |-  ( ph -> ( ; 1 2 x. R ) e. CC ) | 
						
							| 40 | 31 33 39 | subsubd |  |-  ( ph -> ( ( ( 2 x. P ) ^ 2 ) - ( ( 3 x. ( P ^ 2 ) ) - ( ; 1 2 x. R ) ) ) = ( ( ( ( 2 x. P ) ^ 2 ) - ( 3 x. ( P ^ 2 ) ) ) + ( ; 1 2 x. R ) ) ) | 
						
							| 41 | 28 40 | eqtr4d |  |-  ( ph -> ( ( P ^ 2 ) + ( ; 1 2 x. R ) ) = ( ( ( 2 x. P ) ^ 2 ) - ( ( 3 x. ( P ^ 2 ) ) - ( ; 1 2 x. R ) ) ) ) | 
						
							| 42 |  | mulcl |  |-  ( ( 4 e. CC /\ R e. CC ) -> ( 4 x. R ) e. CC ) | 
						
							| 43 | 13 3 42 | sylancr |  |-  ( ph -> ( 4 x. R ) e. CC ) | 
						
							| 44 | 16 17 43 | subdid |  |-  ( ph -> ( 3 x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) = ( ( 3 x. ( P ^ 2 ) ) - ( 3 x. ( 4 x. R ) ) ) ) | 
						
							| 45 |  | 4t3e12 |  |-  ( 4 x. 3 ) = ; 1 2 | 
						
							| 46 | 13 15 45 | mulcomli |  |-  ( 3 x. 4 ) = ; 1 2 | 
						
							| 47 | 46 | oveq1i |  |-  ( ( 3 x. 4 ) x. R ) = ( ; 1 2 x. R ) | 
						
							| 48 | 16 14 3 | mulassd |  |-  ( ph -> ( ( 3 x. 4 ) x. R ) = ( 3 x. ( 4 x. R ) ) ) | 
						
							| 49 | 47 48 | eqtr3id |  |-  ( ph -> ( ; 1 2 x. R ) = ( 3 x. ( 4 x. R ) ) ) | 
						
							| 50 | 49 | oveq2d |  |-  ( ph -> ( ( 3 x. ( P ^ 2 ) ) - ( ; 1 2 x. R ) ) = ( ( 3 x. ( P ^ 2 ) ) - ( 3 x. ( 4 x. R ) ) ) ) | 
						
							| 51 | 44 50 | eqtr4d |  |-  ( ph -> ( 3 x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) = ( ( 3 x. ( P ^ 2 ) ) - ( ; 1 2 x. R ) ) ) | 
						
							| 52 | 51 | oveq2d |  |-  ( ph -> ( ( ( 2 x. P ) ^ 2 ) - ( 3 x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) = ( ( ( 2 x. P ) ^ 2 ) - ( ( 3 x. ( P ^ 2 ) ) - ( ; 1 2 x. R ) ) ) ) | 
						
							| 53 | 41 4 52 | 3eqtr4d |  |-  ( ph -> U = ( ( ( 2 x. P ) ^ 2 ) - ( 3 x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) ) | 
						
							| 54 | 6 | a1i |  |-  ( ph -> 2 e. CC ) | 
						
							| 55 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 56 | 55 | a1i |  |-  ( ph -> 3 e. NN0 ) | 
						
							| 57 | 54 1 56 | mulexpd |  |-  ( ph -> ( ( 2 x. P ) ^ 3 ) = ( ( 2 ^ 3 ) x. ( P ^ 3 ) ) ) | 
						
							| 58 |  | cu2 |  |-  ( 2 ^ 3 ) = 8 | 
						
							| 59 | 58 | oveq1i |  |-  ( ( 2 ^ 3 ) x. ( P ^ 3 ) ) = ( 8 x. ( P ^ 3 ) ) | 
						
							| 60 | 57 59 | eqtrdi |  |-  ( ph -> ( ( 2 x. P ) ^ 3 ) = ( 8 x. ( P ^ 3 ) ) ) | 
						
							| 61 | 60 | oveq2d |  |-  ( ph -> ( 2 x. ( ( 2 x. P ) ^ 3 ) ) = ( 2 x. ( 8 x. ( P ^ 3 ) ) ) ) | 
						
							| 62 |  | 8cn |  |-  8 e. CC | 
						
							| 63 | 62 | a1i |  |-  ( ph -> 8 e. CC ) | 
						
							| 64 |  | expcl |  |-  ( ( P e. CC /\ 3 e. NN0 ) -> ( P ^ 3 ) e. CC ) | 
						
							| 65 | 1 55 64 | sylancl |  |-  ( ph -> ( P ^ 3 ) e. CC ) | 
						
							| 66 | 54 63 65 | mul12d |  |-  ( ph -> ( 2 x. ( 8 x. ( P ^ 3 ) ) ) = ( 8 x. ( 2 x. ( P ^ 3 ) ) ) ) | 
						
							| 67 | 61 66 | eqtrd |  |-  ( ph -> ( 2 x. ( ( 2 x. P ) ^ 3 ) ) = ( 8 x. ( 2 x. ( P ^ 3 ) ) ) ) | 
						
							| 68 |  | 9cn |  |-  9 e. CC | 
						
							| 69 | 68 | a1i |  |-  ( ph -> 9 e. CC ) | 
						
							| 70 |  | mulcl |  |-  ( ( 2 e. CC /\ ( P ^ 3 ) e. CC ) -> ( 2 x. ( P ^ 3 ) ) e. CC ) | 
						
							| 71 | 6 65 70 | sylancr |  |-  ( ph -> ( 2 x. ( P ^ 3 ) ) e. CC ) | 
						
							| 72 | 1 3 | mulcld |  |-  ( ph -> ( P x. R ) e. CC ) | 
						
							| 73 |  | mulcl |  |-  ( ( 8 e. CC /\ ( P x. R ) e. CC ) -> ( 8 x. ( P x. R ) ) e. CC ) | 
						
							| 74 | 62 72 73 | sylancr |  |-  ( ph -> ( 8 x. ( P x. R ) ) e. CC ) | 
						
							| 75 | 69 71 74 | subdid |  |-  ( ph -> ( 9 x. ( ( 2 x. ( P ^ 3 ) ) - ( 8 x. ( P x. R ) ) ) ) = ( ( 9 x. ( 2 x. ( P ^ 3 ) ) ) - ( 9 x. ( 8 x. ( P x. R ) ) ) ) ) | 
						
							| 76 | 30 17 43 | subdid |  |-  ( ph -> ( ( 2 x. P ) x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) = ( ( ( 2 x. P ) x. ( P ^ 2 ) ) - ( ( 2 x. P ) x. ( 4 x. R ) ) ) ) | 
						
							| 77 | 54 1 17 | mulassd |  |-  ( ph -> ( ( 2 x. P ) x. ( P ^ 2 ) ) = ( 2 x. ( P x. ( P ^ 2 ) ) ) ) | 
						
							| 78 | 1 17 | mulcomd |  |-  ( ph -> ( P x. ( P ^ 2 ) ) = ( ( P ^ 2 ) x. P ) ) | 
						
							| 79 |  | df-3 |  |-  3 = ( 2 + 1 ) | 
						
							| 80 | 79 | oveq2i |  |-  ( P ^ 3 ) = ( P ^ ( 2 + 1 ) ) | 
						
							| 81 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 82 |  | expp1 |  |-  ( ( P e. CC /\ 2 e. NN0 ) -> ( P ^ ( 2 + 1 ) ) = ( ( P ^ 2 ) x. P ) ) | 
						
							| 83 | 1 81 82 | sylancl |  |-  ( ph -> ( P ^ ( 2 + 1 ) ) = ( ( P ^ 2 ) x. P ) ) | 
						
							| 84 | 80 83 | eqtrid |  |-  ( ph -> ( P ^ 3 ) = ( ( P ^ 2 ) x. P ) ) | 
						
							| 85 | 78 84 | eqtr4d |  |-  ( ph -> ( P x. ( P ^ 2 ) ) = ( P ^ 3 ) ) | 
						
							| 86 | 85 | oveq2d |  |-  ( ph -> ( 2 x. ( P x. ( P ^ 2 ) ) ) = ( 2 x. ( P ^ 3 ) ) ) | 
						
							| 87 | 77 86 | eqtrd |  |-  ( ph -> ( ( 2 x. P ) x. ( P ^ 2 ) ) = ( 2 x. ( P ^ 3 ) ) ) | 
						
							| 88 | 54 1 14 3 | mul4d |  |-  ( ph -> ( ( 2 x. P ) x. ( 4 x. R ) ) = ( ( 2 x. 4 ) x. ( P x. R ) ) ) | 
						
							| 89 |  | 4t2e8 |  |-  ( 4 x. 2 ) = 8 | 
						
							| 90 | 13 6 89 | mulcomli |  |-  ( 2 x. 4 ) = 8 | 
						
							| 91 | 90 | oveq1i |  |-  ( ( 2 x. 4 ) x. ( P x. R ) ) = ( 8 x. ( P x. R ) ) | 
						
							| 92 | 88 91 | eqtrdi |  |-  ( ph -> ( ( 2 x. P ) x. ( 4 x. R ) ) = ( 8 x. ( P x. R ) ) ) | 
						
							| 93 | 87 92 | oveq12d |  |-  ( ph -> ( ( ( 2 x. P ) x. ( P ^ 2 ) ) - ( ( 2 x. P ) x. ( 4 x. R ) ) ) = ( ( 2 x. ( P ^ 3 ) ) - ( 8 x. ( P x. R ) ) ) ) | 
						
							| 94 | 76 93 | eqtrd |  |-  ( ph -> ( ( 2 x. P ) x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) = ( ( 2 x. ( P ^ 3 ) ) - ( 8 x. ( P x. R ) ) ) ) | 
						
							| 95 | 94 | oveq2d |  |-  ( ph -> ( 9 x. ( ( 2 x. P ) x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) = ( 9 x. ( ( 2 x. ( P ^ 3 ) ) - ( 8 x. ( P x. R ) ) ) ) ) | 
						
							| 96 |  | 9t8e72 |  |-  ( 9 x. 8 ) = ; 7 2 | 
						
							| 97 | 96 | oveq1i |  |-  ( ( 9 x. 8 ) x. ( P x. R ) ) = ( ; 7 2 x. ( P x. R ) ) | 
						
							| 98 | 69 63 72 | mulassd |  |-  ( ph -> ( ( 9 x. 8 ) x. ( P x. R ) ) = ( 9 x. ( 8 x. ( P x. R ) ) ) ) | 
						
							| 99 | 97 98 | eqtr3id |  |-  ( ph -> ( ; 7 2 x. ( P x. R ) ) = ( 9 x. ( 8 x. ( P x. R ) ) ) ) | 
						
							| 100 | 99 | oveq2d |  |-  ( ph -> ( ( 9 x. ( 2 x. ( P ^ 3 ) ) ) - ( ; 7 2 x. ( P x. R ) ) ) = ( ( 9 x. ( 2 x. ( P ^ 3 ) ) ) - ( 9 x. ( 8 x. ( P x. R ) ) ) ) ) | 
						
							| 101 | 75 95 100 | 3eqtr4d |  |-  ( ph -> ( 9 x. ( ( 2 x. P ) x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) = ( ( 9 x. ( 2 x. ( P ^ 3 ) ) ) - ( ; 7 2 x. ( P x. R ) ) ) ) | 
						
							| 102 | 67 101 | oveq12d |  |-  ( ph -> ( ( 2 x. ( ( 2 x. P ) ^ 3 ) ) - ( 9 x. ( ( 2 x. P ) x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) ) = ( ( 8 x. ( 2 x. ( P ^ 3 ) ) ) - ( ( 9 x. ( 2 x. ( P ^ 3 ) ) ) - ( ; 7 2 x. ( P x. R ) ) ) ) ) | 
						
							| 103 |  | mulcl |  |-  ( ( 8 e. CC /\ ( 2 x. ( P ^ 3 ) ) e. CC ) -> ( 8 x. ( 2 x. ( P ^ 3 ) ) ) e. CC ) | 
						
							| 104 | 62 71 103 | sylancr |  |-  ( ph -> ( 8 x. ( 2 x. ( P ^ 3 ) ) ) e. CC ) | 
						
							| 105 |  | mulcl |  |-  ( ( 9 e. CC /\ ( 2 x. ( P ^ 3 ) ) e. CC ) -> ( 9 x. ( 2 x. ( P ^ 3 ) ) ) e. CC ) | 
						
							| 106 | 68 71 105 | sylancr |  |-  ( ph -> ( 9 x. ( 2 x. ( P ^ 3 ) ) ) e. CC ) | 
						
							| 107 |  | 7nn0 |  |-  7 e. NN0 | 
						
							| 108 | 107 35 | decnncl |  |-  ; 7 2 e. NN | 
						
							| 109 | 108 | nncni |  |-  ; 7 2 e. CC | 
						
							| 110 |  | mulcl |  |-  ( ( ; 7 2 e. CC /\ ( P x. R ) e. CC ) -> ( ; 7 2 x. ( P x. R ) ) e. CC ) | 
						
							| 111 | 109 72 110 | sylancr |  |-  ( ph -> ( ; 7 2 x. ( P x. R ) ) e. CC ) | 
						
							| 112 | 104 106 111 | subsubd |  |-  ( ph -> ( ( 8 x. ( 2 x. ( P ^ 3 ) ) ) - ( ( 9 x. ( 2 x. ( P ^ 3 ) ) ) - ( ; 7 2 x. ( P x. R ) ) ) ) = ( ( ( 8 x. ( 2 x. ( P ^ 3 ) ) ) - ( 9 x. ( 2 x. ( P ^ 3 ) ) ) ) + ( ; 7 2 x. ( P x. R ) ) ) ) | 
						
							| 113 | 106 104 | negsubdi2d |  |-  ( ph -> -u ( ( 9 x. ( 2 x. ( P ^ 3 ) ) ) - ( 8 x. ( 2 x. ( P ^ 3 ) ) ) ) = ( ( 8 x. ( 2 x. ( P ^ 3 ) ) ) - ( 9 x. ( 2 x. ( P ^ 3 ) ) ) ) ) | 
						
							| 114 | 69 63 71 | subdird |  |-  ( ph -> ( ( 9 - 8 ) x. ( 2 x. ( P ^ 3 ) ) ) = ( ( 9 x. ( 2 x. ( P ^ 3 ) ) ) - ( 8 x. ( 2 x. ( P ^ 3 ) ) ) ) ) | 
						
							| 115 |  | 8p1e9 |  |-  ( 8 + 1 ) = 9 | 
						
							| 116 | 68 62 20 115 | subaddrii |  |-  ( 9 - 8 ) = 1 | 
						
							| 117 | 116 | oveq1i |  |-  ( ( 9 - 8 ) x. ( 2 x. ( P ^ 3 ) ) ) = ( 1 x. ( 2 x. ( P ^ 3 ) ) ) | 
						
							| 118 | 71 | mullidd |  |-  ( ph -> ( 1 x. ( 2 x. ( P ^ 3 ) ) ) = ( 2 x. ( P ^ 3 ) ) ) | 
						
							| 119 | 117 118 | eqtrid |  |-  ( ph -> ( ( 9 - 8 ) x. ( 2 x. ( P ^ 3 ) ) ) = ( 2 x. ( P ^ 3 ) ) ) | 
						
							| 120 | 114 119 | eqtr3d |  |-  ( ph -> ( ( 9 x. ( 2 x. ( P ^ 3 ) ) ) - ( 8 x. ( 2 x. ( P ^ 3 ) ) ) ) = ( 2 x. ( P ^ 3 ) ) ) | 
						
							| 121 | 120 | negeqd |  |-  ( ph -> -u ( ( 9 x. ( 2 x. ( P ^ 3 ) ) ) - ( 8 x. ( 2 x. ( P ^ 3 ) ) ) ) = -u ( 2 x. ( P ^ 3 ) ) ) | 
						
							| 122 | 113 121 | eqtr3d |  |-  ( ph -> ( ( 8 x. ( 2 x. ( P ^ 3 ) ) ) - ( 9 x. ( 2 x. ( P ^ 3 ) ) ) ) = -u ( 2 x. ( P ^ 3 ) ) ) | 
						
							| 123 | 122 | oveq1d |  |-  ( ph -> ( ( ( 8 x. ( 2 x. ( P ^ 3 ) ) ) - ( 9 x. ( 2 x. ( P ^ 3 ) ) ) ) + ( ; 7 2 x. ( P x. R ) ) ) = ( -u ( 2 x. ( P ^ 3 ) ) + ( ; 7 2 x. ( P x. R ) ) ) ) | 
						
							| 124 | 102 112 123 | 3eqtrd |  |-  ( ph -> ( ( 2 x. ( ( 2 x. P ) ^ 3 ) ) - ( 9 x. ( ( 2 x. P ) x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) ) = ( -u ( 2 x. ( P ^ 3 ) ) + ( ; 7 2 x. ( P x. R ) ) ) ) | 
						
							| 125 |  | 7nn |  |-  7 e. NN | 
						
							| 126 | 81 125 | decnncl |  |-  ; 2 7 e. NN | 
						
							| 127 | 126 | nncni |  |-  ; 2 7 e. CC | 
						
							| 128 | 2 | sqcld |  |-  ( ph -> ( Q ^ 2 ) e. CC ) | 
						
							| 129 |  | mulneg2 |  |-  ( ( ; 2 7 e. CC /\ ( Q ^ 2 ) e. CC ) -> ( ; 2 7 x. -u ( Q ^ 2 ) ) = -u ( ; 2 7 x. ( Q ^ 2 ) ) ) | 
						
							| 130 | 127 128 129 | sylancr |  |-  ( ph -> ( ; 2 7 x. -u ( Q ^ 2 ) ) = -u ( ; 2 7 x. ( Q ^ 2 ) ) ) | 
						
							| 131 | 124 130 | oveq12d |  |-  ( ph -> ( ( ( 2 x. ( ( 2 x. P ) ^ 3 ) ) - ( 9 x. ( ( 2 x. P ) x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) ) + ( ; 2 7 x. -u ( Q ^ 2 ) ) ) = ( ( -u ( 2 x. ( P ^ 3 ) ) + ( ; 7 2 x. ( P x. R ) ) ) + -u ( ; 2 7 x. ( Q ^ 2 ) ) ) ) | 
						
							| 132 | 71 | negcld |  |-  ( ph -> -u ( 2 x. ( P ^ 3 ) ) e. CC ) | 
						
							| 133 |  | mulcl |  |-  ( ( ; 2 7 e. CC /\ ( Q ^ 2 ) e. CC ) -> ( ; 2 7 x. ( Q ^ 2 ) ) e. CC ) | 
						
							| 134 | 127 128 133 | sylancr |  |-  ( ph -> ( ; 2 7 x. ( Q ^ 2 ) ) e. CC ) | 
						
							| 135 | 132 111 134 | addsubd |  |-  ( ph -> ( ( -u ( 2 x. ( P ^ 3 ) ) + ( ; 7 2 x. ( P x. R ) ) ) - ( ; 2 7 x. ( Q ^ 2 ) ) ) = ( ( -u ( 2 x. ( P ^ 3 ) ) - ( ; 2 7 x. ( Q ^ 2 ) ) ) + ( ; 7 2 x. ( P x. R ) ) ) ) | 
						
							| 136 | 132 111 | addcld |  |-  ( ph -> ( -u ( 2 x. ( P ^ 3 ) ) + ( ; 7 2 x. ( P x. R ) ) ) e. CC ) | 
						
							| 137 | 136 134 | negsubd |  |-  ( ph -> ( ( -u ( 2 x. ( P ^ 3 ) ) + ( ; 7 2 x. ( P x. R ) ) ) + -u ( ; 2 7 x. ( Q ^ 2 ) ) ) = ( ( -u ( 2 x. ( P ^ 3 ) ) + ( ; 7 2 x. ( P x. R ) ) ) - ( ; 2 7 x. ( Q ^ 2 ) ) ) ) | 
						
							| 138 | 135 137 5 | 3eqtr4d |  |-  ( ph -> ( ( -u ( 2 x. ( P ^ 3 ) ) + ( ; 7 2 x. ( P x. R ) ) ) + -u ( ; 2 7 x. ( Q ^ 2 ) ) ) = V ) | 
						
							| 139 | 131 138 | eqtr2d |  |-  ( ph -> V = ( ( ( 2 x. ( ( 2 x. P ) ^ 3 ) ) - ( 9 x. ( ( 2 x. P ) x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) ) + ( ; 2 7 x. -u ( Q ^ 2 ) ) ) ) | 
						
							| 140 | 53 139 | jca |  |-  ( ph -> ( U = ( ( ( 2 x. P ) ^ 2 ) - ( 3 x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) /\ V = ( ( ( 2 x. ( ( 2 x. P ) ^ 3 ) ) - ( 9 x. ( ( 2 x. P ) x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) ) + ( ; 2 7 x. -u ( Q ^ 2 ) ) ) ) ) |