| Step |
Hyp |
Ref |
Expression |
| 1 |
|
quart.a |
|- ( ph -> A e. CC ) |
| 2 |
|
quart.b |
|- ( ph -> B e. CC ) |
| 3 |
|
quart.c |
|- ( ph -> C e. CC ) |
| 4 |
|
quart.d |
|- ( ph -> D e. CC ) |
| 5 |
|
quart.x |
|- ( ph -> X e. CC ) |
| 6 |
|
quart.e |
|- ( ph -> E = -u ( A / 4 ) ) |
| 7 |
|
quart.p |
|- ( ph -> P = ( B - ( ( 3 / 8 ) x. ( A ^ 2 ) ) ) ) |
| 8 |
|
quart.q |
|- ( ph -> Q = ( ( C - ( ( A x. B ) / 2 ) ) + ( ( A ^ 3 ) / 8 ) ) ) |
| 9 |
|
quart.r |
|- ( ph -> R = ( ( D - ( ( C x. A ) / 4 ) ) + ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) - ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) ) ) |
| 10 |
|
quart.u |
|- ( ph -> U = ( ( P ^ 2 ) + ( ; 1 2 x. R ) ) ) |
| 11 |
|
quart.v |
|- ( ph -> V = ( ( -u ( 2 x. ( P ^ 3 ) ) - ( ; 2 7 x. ( Q ^ 2 ) ) ) + ( ; 7 2 x. ( P x. R ) ) ) ) |
| 12 |
|
quart.w |
|- ( ph -> W = ( sqrt ` ( ( V ^ 2 ) - ( 4 x. ( U ^ 3 ) ) ) ) ) |
| 13 |
1 2 3 4 7 8 9
|
quart1cl |
|- ( ph -> ( P e. CC /\ Q e. CC /\ R e. CC ) ) |
| 14 |
13
|
simp1d |
|- ( ph -> P e. CC ) |
| 15 |
14
|
sqcld |
|- ( ph -> ( P ^ 2 ) e. CC ) |
| 16 |
|
1nn0 |
|- 1 e. NN0 |
| 17 |
|
2nn |
|- 2 e. NN |
| 18 |
16 17
|
decnncl |
|- ; 1 2 e. NN |
| 19 |
18
|
nncni |
|- ; 1 2 e. CC |
| 20 |
13
|
simp3d |
|- ( ph -> R e. CC ) |
| 21 |
|
mulcl |
|- ( ( ; 1 2 e. CC /\ R e. CC ) -> ( ; 1 2 x. R ) e. CC ) |
| 22 |
19 20 21
|
sylancr |
|- ( ph -> ( ; 1 2 x. R ) e. CC ) |
| 23 |
15 22
|
addcld |
|- ( ph -> ( ( P ^ 2 ) + ( ; 1 2 x. R ) ) e. CC ) |
| 24 |
10 23
|
eqeltrd |
|- ( ph -> U e. CC ) |
| 25 |
|
2cn |
|- 2 e. CC |
| 26 |
|
3nn0 |
|- 3 e. NN0 |
| 27 |
|
expcl |
|- ( ( P e. CC /\ 3 e. NN0 ) -> ( P ^ 3 ) e. CC ) |
| 28 |
14 26 27
|
sylancl |
|- ( ph -> ( P ^ 3 ) e. CC ) |
| 29 |
|
mulcl |
|- ( ( 2 e. CC /\ ( P ^ 3 ) e. CC ) -> ( 2 x. ( P ^ 3 ) ) e. CC ) |
| 30 |
25 28 29
|
sylancr |
|- ( ph -> ( 2 x. ( P ^ 3 ) ) e. CC ) |
| 31 |
30
|
negcld |
|- ( ph -> -u ( 2 x. ( P ^ 3 ) ) e. CC ) |
| 32 |
|
2nn0 |
|- 2 e. NN0 |
| 33 |
|
7nn |
|- 7 e. NN |
| 34 |
32 33
|
decnncl |
|- ; 2 7 e. NN |
| 35 |
34
|
nncni |
|- ; 2 7 e. CC |
| 36 |
13
|
simp2d |
|- ( ph -> Q e. CC ) |
| 37 |
36
|
sqcld |
|- ( ph -> ( Q ^ 2 ) e. CC ) |
| 38 |
|
mulcl |
|- ( ( ; 2 7 e. CC /\ ( Q ^ 2 ) e. CC ) -> ( ; 2 7 x. ( Q ^ 2 ) ) e. CC ) |
| 39 |
35 37 38
|
sylancr |
|- ( ph -> ( ; 2 7 x. ( Q ^ 2 ) ) e. CC ) |
| 40 |
31 39
|
subcld |
|- ( ph -> ( -u ( 2 x. ( P ^ 3 ) ) - ( ; 2 7 x. ( Q ^ 2 ) ) ) e. CC ) |
| 41 |
|
7nn0 |
|- 7 e. NN0 |
| 42 |
41 17
|
decnncl |
|- ; 7 2 e. NN |
| 43 |
42
|
nncni |
|- ; 7 2 e. CC |
| 44 |
14 20
|
mulcld |
|- ( ph -> ( P x. R ) e. CC ) |
| 45 |
|
mulcl |
|- ( ( ; 7 2 e. CC /\ ( P x. R ) e. CC ) -> ( ; 7 2 x. ( P x. R ) ) e. CC ) |
| 46 |
43 44 45
|
sylancr |
|- ( ph -> ( ; 7 2 x. ( P x. R ) ) e. CC ) |
| 47 |
40 46
|
addcld |
|- ( ph -> ( ( -u ( 2 x. ( P ^ 3 ) ) - ( ; 2 7 x. ( Q ^ 2 ) ) ) + ( ; 7 2 x. ( P x. R ) ) ) e. CC ) |
| 48 |
11 47
|
eqeltrd |
|- ( ph -> V e. CC ) |
| 49 |
48
|
sqcld |
|- ( ph -> ( V ^ 2 ) e. CC ) |
| 50 |
|
4cn |
|- 4 e. CC |
| 51 |
|
expcl |
|- ( ( U e. CC /\ 3 e. NN0 ) -> ( U ^ 3 ) e. CC ) |
| 52 |
24 26 51
|
sylancl |
|- ( ph -> ( U ^ 3 ) e. CC ) |
| 53 |
|
mulcl |
|- ( ( 4 e. CC /\ ( U ^ 3 ) e. CC ) -> ( 4 x. ( U ^ 3 ) ) e. CC ) |
| 54 |
50 52 53
|
sylancr |
|- ( ph -> ( 4 x. ( U ^ 3 ) ) e. CC ) |
| 55 |
49 54
|
subcld |
|- ( ph -> ( ( V ^ 2 ) - ( 4 x. ( U ^ 3 ) ) ) e. CC ) |
| 56 |
55
|
sqrtcld |
|- ( ph -> ( sqrt ` ( ( V ^ 2 ) - ( 4 x. ( U ^ 3 ) ) ) ) e. CC ) |
| 57 |
12 56
|
eqeltrd |
|- ( ph -> W e. CC ) |
| 58 |
24 48 57
|
3jca |
|- ( ph -> ( U e. CC /\ V e. CC /\ W e. CC ) ) |