| Step | Hyp | Ref | Expression | 
						
							| 1 |  | quart.a | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | quart.b | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | quart.c | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 4 |  | quart.d | ⊢ ( 𝜑  →  𝐷  ∈  ℂ ) | 
						
							| 5 |  | quart.x | ⊢ ( 𝜑  →  𝑋  ∈  ℂ ) | 
						
							| 6 |  | quart.e | ⊢ ( 𝜑  →  𝐸  =  - ( 𝐴  /  4 ) ) | 
						
							| 7 |  | quart.p | ⊢ ( 𝜑  →  𝑃  =  ( 𝐵  −  ( ( 3  /  8 )  ·  ( 𝐴 ↑ 2 ) ) ) ) | 
						
							| 8 |  | quart.q | ⊢ ( 𝜑  →  𝑄  =  ( ( 𝐶  −  ( ( 𝐴  ·  𝐵 )  /  2 ) )  +  ( ( 𝐴 ↑ 3 )  /  8 ) ) ) | 
						
							| 9 |  | quart.r | ⊢ ( 𝜑  →  𝑅  =  ( ( 𝐷  −  ( ( 𝐶  ·  𝐴 )  /  4 ) )  +  ( ( ( ( 𝐴 ↑ 2 )  ·  𝐵 )  /  ; 1 6 )  −  ( ( 3  /  ; ; 2 5 6 )  ·  ( 𝐴 ↑ 4 ) ) ) ) ) | 
						
							| 10 |  | quart.u | ⊢ ( 𝜑  →  𝑈  =  ( ( 𝑃 ↑ 2 )  +  ( ; 1 2  ·  𝑅 ) ) ) | 
						
							| 11 |  | quart.v | ⊢ ( 𝜑  →  𝑉  =  ( ( - ( 2  ·  ( 𝑃 ↑ 3 ) )  −  ( ; 2 7  ·  ( 𝑄 ↑ 2 ) ) )  +  ( ; 7 2  ·  ( 𝑃  ·  𝑅 ) ) ) ) | 
						
							| 12 |  | quart.w | ⊢ ( 𝜑  →  𝑊  =  ( √ ‘ ( ( 𝑉 ↑ 2 )  −  ( 4  ·  ( 𝑈 ↑ 3 ) ) ) ) ) | 
						
							| 13 | 1 2 3 4 7 8 9 | quart1cl | ⊢ ( 𝜑  →  ( 𝑃  ∈  ℂ  ∧  𝑄  ∈  ℂ  ∧  𝑅  ∈  ℂ ) ) | 
						
							| 14 | 13 | simp1d | ⊢ ( 𝜑  →  𝑃  ∈  ℂ ) | 
						
							| 15 | 14 | sqcld | ⊢ ( 𝜑  →  ( 𝑃 ↑ 2 )  ∈  ℂ ) | 
						
							| 16 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 17 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 18 | 16 17 | decnncl | ⊢ ; 1 2  ∈  ℕ | 
						
							| 19 | 18 | nncni | ⊢ ; 1 2  ∈  ℂ | 
						
							| 20 | 13 | simp3d | ⊢ ( 𝜑  →  𝑅  ∈  ℂ ) | 
						
							| 21 |  | mulcl | ⊢ ( ( ; 1 2  ∈  ℂ  ∧  𝑅  ∈  ℂ )  →  ( ; 1 2  ·  𝑅 )  ∈  ℂ ) | 
						
							| 22 | 19 20 21 | sylancr | ⊢ ( 𝜑  →  ( ; 1 2  ·  𝑅 )  ∈  ℂ ) | 
						
							| 23 | 15 22 | addcld | ⊢ ( 𝜑  →  ( ( 𝑃 ↑ 2 )  +  ( ; 1 2  ·  𝑅 ) )  ∈  ℂ ) | 
						
							| 24 | 10 23 | eqeltrd | ⊢ ( 𝜑  →  𝑈  ∈  ℂ ) | 
						
							| 25 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 26 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 27 |  | expcl | ⊢ ( ( 𝑃  ∈  ℂ  ∧  3  ∈  ℕ0 )  →  ( 𝑃 ↑ 3 )  ∈  ℂ ) | 
						
							| 28 | 14 26 27 | sylancl | ⊢ ( 𝜑  →  ( 𝑃 ↑ 3 )  ∈  ℂ ) | 
						
							| 29 |  | mulcl | ⊢ ( ( 2  ∈  ℂ  ∧  ( 𝑃 ↑ 3 )  ∈  ℂ )  →  ( 2  ·  ( 𝑃 ↑ 3 ) )  ∈  ℂ ) | 
						
							| 30 | 25 28 29 | sylancr | ⊢ ( 𝜑  →  ( 2  ·  ( 𝑃 ↑ 3 ) )  ∈  ℂ ) | 
						
							| 31 | 30 | negcld | ⊢ ( 𝜑  →  - ( 2  ·  ( 𝑃 ↑ 3 ) )  ∈  ℂ ) | 
						
							| 32 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 33 |  | 7nn | ⊢ 7  ∈  ℕ | 
						
							| 34 | 32 33 | decnncl | ⊢ ; 2 7  ∈  ℕ | 
						
							| 35 | 34 | nncni | ⊢ ; 2 7  ∈  ℂ | 
						
							| 36 | 13 | simp2d | ⊢ ( 𝜑  →  𝑄  ∈  ℂ ) | 
						
							| 37 | 36 | sqcld | ⊢ ( 𝜑  →  ( 𝑄 ↑ 2 )  ∈  ℂ ) | 
						
							| 38 |  | mulcl | ⊢ ( ( ; 2 7  ∈  ℂ  ∧  ( 𝑄 ↑ 2 )  ∈  ℂ )  →  ( ; 2 7  ·  ( 𝑄 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 39 | 35 37 38 | sylancr | ⊢ ( 𝜑  →  ( ; 2 7  ·  ( 𝑄 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 40 | 31 39 | subcld | ⊢ ( 𝜑  →  ( - ( 2  ·  ( 𝑃 ↑ 3 ) )  −  ( ; 2 7  ·  ( 𝑄 ↑ 2 ) ) )  ∈  ℂ ) | 
						
							| 41 |  | 7nn0 | ⊢ 7  ∈  ℕ0 | 
						
							| 42 | 41 17 | decnncl | ⊢ ; 7 2  ∈  ℕ | 
						
							| 43 | 42 | nncni | ⊢ ; 7 2  ∈  ℂ | 
						
							| 44 | 14 20 | mulcld | ⊢ ( 𝜑  →  ( 𝑃  ·  𝑅 )  ∈  ℂ ) | 
						
							| 45 |  | mulcl | ⊢ ( ( ; 7 2  ∈  ℂ  ∧  ( 𝑃  ·  𝑅 )  ∈  ℂ )  →  ( ; 7 2  ·  ( 𝑃  ·  𝑅 ) )  ∈  ℂ ) | 
						
							| 46 | 43 44 45 | sylancr | ⊢ ( 𝜑  →  ( ; 7 2  ·  ( 𝑃  ·  𝑅 ) )  ∈  ℂ ) | 
						
							| 47 | 40 46 | addcld | ⊢ ( 𝜑  →  ( ( - ( 2  ·  ( 𝑃 ↑ 3 ) )  −  ( ; 2 7  ·  ( 𝑄 ↑ 2 ) ) )  +  ( ; 7 2  ·  ( 𝑃  ·  𝑅 ) ) )  ∈  ℂ ) | 
						
							| 48 | 11 47 | eqeltrd | ⊢ ( 𝜑  →  𝑉  ∈  ℂ ) | 
						
							| 49 | 48 | sqcld | ⊢ ( 𝜑  →  ( 𝑉 ↑ 2 )  ∈  ℂ ) | 
						
							| 50 |  | 4cn | ⊢ 4  ∈  ℂ | 
						
							| 51 |  | expcl | ⊢ ( ( 𝑈  ∈  ℂ  ∧  3  ∈  ℕ0 )  →  ( 𝑈 ↑ 3 )  ∈  ℂ ) | 
						
							| 52 | 24 26 51 | sylancl | ⊢ ( 𝜑  →  ( 𝑈 ↑ 3 )  ∈  ℂ ) | 
						
							| 53 |  | mulcl | ⊢ ( ( 4  ∈  ℂ  ∧  ( 𝑈 ↑ 3 )  ∈  ℂ )  →  ( 4  ·  ( 𝑈 ↑ 3 ) )  ∈  ℂ ) | 
						
							| 54 | 50 52 53 | sylancr | ⊢ ( 𝜑  →  ( 4  ·  ( 𝑈 ↑ 3 ) )  ∈  ℂ ) | 
						
							| 55 | 49 54 | subcld | ⊢ ( 𝜑  →  ( ( 𝑉 ↑ 2 )  −  ( 4  ·  ( 𝑈 ↑ 3 ) ) )  ∈  ℂ ) | 
						
							| 56 | 55 | sqrtcld | ⊢ ( 𝜑  →  ( √ ‘ ( ( 𝑉 ↑ 2 )  −  ( 4  ·  ( 𝑈 ↑ 3 ) ) ) )  ∈  ℂ ) | 
						
							| 57 | 12 56 | eqeltrd | ⊢ ( 𝜑  →  𝑊  ∈  ℂ ) | 
						
							| 58 | 24 48 57 | 3jca | ⊢ ( 𝜑  →  ( 𝑈  ∈  ℂ  ∧  𝑉  ∈  ℂ  ∧  𝑊  ∈  ℂ ) ) |