| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dquart.b |  |-  ( ph -> B e. CC ) | 
						
							| 2 |  | dquart.c |  |-  ( ph -> C e. CC ) | 
						
							| 3 |  | dquart.x |  |-  ( ph -> X e. CC ) | 
						
							| 4 |  | dquart.s |  |-  ( ph -> S e. CC ) | 
						
							| 5 |  | dquart.m |  |-  ( ph -> M = ( ( 2 x. S ) ^ 2 ) ) | 
						
							| 6 |  | dquart.m0 |  |-  ( ph -> M =/= 0 ) | 
						
							| 7 |  | dquart.i |  |-  ( ph -> I e. CC ) | 
						
							| 8 |  | dquart.i2 |  |-  ( ph -> ( I ^ 2 ) = ( ( -u ( S ^ 2 ) - ( B / 2 ) ) + ( ( C / 4 ) / S ) ) ) | 
						
							| 9 |  | dquart.d |  |-  ( ph -> D e. CC ) | 
						
							| 10 |  | dquart.3 |  |-  ( ph -> ( ( ( M ^ 3 ) + ( ( 2 x. B ) x. ( M ^ 2 ) ) ) + ( ( ( ( B ^ 2 ) - ( 4 x. D ) ) x. M ) + -u ( C ^ 2 ) ) ) = 0 ) | 
						
							| 11 |  | dquart.j |  |-  ( ph -> J e. CC ) | 
						
							| 12 |  | dquart.j2 |  |-  ( ph -> ( J ^ 2 ) = ( ( -u ( S ^ 2 ) - ( B / 2 ) ) - ( ( C / 4 ) / S ) ) ) | 
						
							| 13 | 3 | sqcld |  |-  ( ph -> ( X ^ 2 ) e. CC ) | 
						
							| 14 |  | 2cn |  |-  2 e. CC | 
						
							| 15 |  | mulcl |  |-  ( ( 2 e. CC /\ S e. CC ) -> ( 2 x. S ) e. CC ) | 
						
							| 16 | 14 4 15 | sylancr |  |-  ( ph -> ( 2 x. S ) e. CC ) | 
						
							| 17 | 16 | sqcld |  |-  ( ph -> ( ( 2 x. S ) ^ 2 ) e. CC ) | 
						
							| 18 | 5 17 | eqeltrd |  |-  ( ph -> M e. CC ) | 
						
							| 19 | 18 1 | addcld |  |-  ( ph -> ( M + B ) e. CC ) | 
						
							| 20 | 19 | halfcld |  |-  ( ph -> ( ( M + B ) / 2 ) e. CC ) | 
						
							| 21 |  | binom2 |  |-  ( ( ( X ^ 2 ) e. CC /\ ( ( M + B ) / 2 ) e. CC ) -> ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) ^ 2 ) = ( ( ( ( X ^ 2 ) ^ 2 ) + ( 2 x. ( ( X ^ 2 ) x. ( ( M + B ) / 2 ) ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) ) | 
						
							| 22 | 13 20 21 | syl2anc |  |-  ( ph -> ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) ^ 2 ) = ( ( ( ( X ^ 2 ) ^ 2 ) + ( 2 x. ( ( X ^ 2 ) x. ( ( M + B ) / 2 ) ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) ) | 
						
							| 23 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 24 | 23 | a1i |  |-  ( ph -> 2 e. NN0 ) | 
						
							| 25 | 3 24 24 | expmuld |  |-  ( ph -> ( X ^ ( 2 x. 2 ) ) = ( ( X ^ 2 ) ^ 2 ) ) | 
						
							| 26 |  | 2t2e4 |  |-  ( 2 x. 2 ) = 4 | 
						
							| 27 | 26 | oveq2i |  |-  ( X ^ ( 2 x. 2 ) ) = ( X ^ 4 ) | 
						
							| 28 | 25 27 | eqtr3di |  |-  ( ph -> ( ( X ^ 2 ) ^ 2 ) = ( X ^ 4 ) ) | 
						
							| 29 | 14 | a1i |  |-  ( ph -> 2 e. CC ) | 
						
							| 30 | 29 13 20 | mul12d |  |-  ( ph -> ( 2 x. ( ( X ^ 2 ) x. ( ( M + B ) / 2 ) ) ) = ( ( X ^ 2 ) x. ( 2 x. ( ( M + B ) / 2 ) ) ) ) | 
						
							| 31 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 32 | 31 | a1i |  |-  ( ph -> 2 =/= 0 ) | 
						
							| 33 | 19 29 32 | divcan2d |  |-  ( ph -> ( 2 x. ( ( M + B ) / 2 ) ) = ( M + B ) ) | 
						
							| 34 | 33 | oveq2d |  |-  ( ph -> ( ( X ^ 2 ) x. ( 2 x. ( ( M + B ) / 2 ) ) ) = ( ( X ^ 2 ) x. ( M + B ) ) ) | 
						
							| 35 | 13 19 | mulcomd |  |-  ( ph -> ( ( X ^ 2 ) x. ( M + B ) ) = ( ( M + B ) x. ( X ^ 2 ) ) ) | 
						
							| 36 | 34 35 | eqtrd |  |-  ( ph -> ( ( X ^ 2 ) x. ( 2 x. ( ( M + B ) / 2 ) ) ) = ( ( M + B ) x. ( X ^ 2 ) ) ) | 
						
							| 37 | 18 1 13 | adddird |  |-  ( ph -> ( ( M + B ) x. ( X ^ 2 ) ) = ( ( M x. ( X ^ 2 ) ) + ( B x. ( X ^ 2 ) ) ) ) | 
						
							| 38 | 30 36 37 | 3eqtrd |  |-  ( ph -> ( 2 x. ( ( X ^ 2 ) x. ( ( M + B ) / 2 ) ) ) = ( ( M x. ( X ^ 2 ) ) + ( B x. ( X ^ 2 ) ) ) ) | 
						
							| 39 | 28 38 | oveq12d |  |-  ( ph -> ( ( ( X ^ 2 ) ^ 2 ) + ( 2 x. ( ( X ^ 2 ) x. ( ( M + B ) / 2 ) ) ) ) = ( ( X ^ 4 ) + ( ( M x. ( X ^ 2 ) ) + ( B x. ( X ^ 2 ) ) ) ) ) | 
						
							| 40 |  | 4nn0 |  |-  4 e. NN0 | 
						
							| 41 |  | expcl |  |-  ( ( X e. CC /\ 4 e. NN0 ) -> ( X ^ 4 ) e. CC ) | 
						
							| 42 | 3 40 41 | sylancl |  |-  ( ph -> ( X ^ 4 ) e. CC ) | 
						
							| 43 | 18 13 | mulcld |  |-  ( ph -> ( M x. ( X ^ 2 ) ) e. CC ) | 
						
							| 44 | 1 13 | mulcld |  |-  ( ph -> ( B x. ( X ^ 2 ) ) e. CC ) | 
						
							| 45 | 42 43 44 | add12d |  |-  ( ph -> ( ( X ^ 4 ) + ( ( M x. ( X ^ 2 ) ) + ( B x. ( X ^ 2 ) ) ) ) = ( ( M x. ( X ^ 2 ) ) + ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) ) ) | 
						
							| 46 | 39 45 | eqtrd |  |-  ( ph -> ( ( ( X ^ 2 ) ^ 2 ) + ( 2 x. ( ( X ^ 2 ) x. ( ( M + B ) / 2 ) ) ) ) = ( ( M x. ( X ^ 2 ) ) + ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) ) ) | 
						
							| 47 | 46 | oveq1d |  |-  ( ph -> ( ( ( ( X ^ 2 ) ^ 2 ) + ( 2 x. ( ( X ^ 2 ) x. ( ( M + B ) / 2 ) ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) = ( ( ( M x. ( X ^ 2 ) ) + ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) ) | 
						
							| 48 | 42 44 | addcld |  |-  ( ph -> ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) e. CC ) | 
						
							| 49 | 20 | sqcld |  |-  ( ph -> ( ( ( M + B ) / 2 ) ^ 2 ) e. CC ) | 
						
							| 50 | 43 48 49 | addassd |  |-  ( ph -> ( ( ( M x. ( X ^ 2 ) ) + ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) = ( ( M x. ( X ^ 2 ) ) + ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) ) ) | 
						
							| 51 | 22 47 50 | 3eqtrd |  |-  ( ph -> ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) ^ 2 ) = ( ( M x. ( X ^ 2 ) ) + ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) ) ) | 
						
							| 52 | 18 | halfcld |  |-  ( ph -> ( M / 2 ) e. CC ) | 
						
							| 53 | 52 3 | mulcld |  |-  ( ph -> ( ( M / 2 ) x. X ) e. CC ) | 
						
							| 54 |  | 4cn |  |-  4 e. CC | 
						
							| 55 | 54 | a1i |  |-  ( ph -> 4 e. CC ) | 
						
							| 56 |  | 4ne0 |  |-  4 =/= 0 | 
						
							| 57 | 56 | a1i |  |-  ( ph -> 4 =/= 0 ) | 
						
							| 58 | 2 55 57 | divcld |  |-  ( ph -> ( C / 4 ) e. CC ) | 
						
							| 59 | 53 58 | subcld |  |-  ( ph -> ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) e. CC ) | 
						
							| 60 | 5 6 | eqnetrrd |  |-  ( ph -> ( ( 2 x. S ) ^ 2 ) =/= 0 ) | 
						
							| 61 |  | sqne0 |  |-  ( ( 2 x. S ) e. CC -> ( ( ( 2 x. S ) ^ 2 ) =/= 0 <-> ( 2 x. S ) =/= 0 ) ) | 
						
							| 62 | 16 61 | syl |  |-  ( ph -> ( ( ( 2 x. S ) ^ 2 ) =/= 0 <-> ( 2 x. S ) =/= 0 ) ) | 
						
							| 63 | 60 62 | mpbid |  |-  ( ph -> ( 2 x. S ) =/= 0 ) | 
						
							| 64 |  | mulne0b |  |-  ( ( 2 e. CC /\ S e. CC ) -> ( ( 2 =/= 0 /\ S =/= 0 ) <-> ( 2 x. S ) =/= 0 ) ) | 
						
							| 65 | 14 4 64 | sylancr |  |-  ( ph -> ( ( 2 =/= 0 /\ S =/= 0 ) <-> ( 2 x. S ) =/= 0 ) ) | 
						
							| 66 | 63 65 | mpbird |  |-  ( ph -> ( 2 =/= 0 /\ S =/= 0 ) ) | 
						
							| 67 | 66 | simprd |  |-  ( ph -> S =/= 0 ) | 
						
							| 68 | 59 4 29 67 32 | divcan5d |  |-  ( ph -> ( ( 2 x. ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) ) / ( 2 x. S ) ) = ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) | 
						
							| 69 | 29 53 58 | subdid |  |-  ( ph -> ( 2 x. ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) ) = ( ( 2 x. ( ( M / 2 ) x. X ) ) - ( 2 x. ( C / 4 ) ) ) ) | 
						
							| 70 | 29 52 3 | mulassd |  |-  ( ph -> ( ( 2 x. ( M / 2 ) ) x. X ) = ( 2 x. ( ( M / 2 ) x. X ) ) ) | 
						
							| 71 | 18 29 32 | divcan2d |  |-  ( ph -> ( 2 x. ( M / 2 ) ) = M ) | 
						
							| 72 | 71 | oveq1d |  |-  ( ph -> ( ( 2 x. ( M / 2 ) ) x. X ) = ( M x. X ) ) | 
						
							| 73 | 70 72 | eqtr3d |  |-  ( ph -> ( 2 x. ( ( M / 2 ) x. X ) ) = ( M x. X ) ) | 
						
							| 74 | 29 2 55 57 | divassd |  |-  ( ph -> ( ( 2 x. C ) / 4 ) = ( 2 x. ( C / 4 ) ) ) | 
						
							| 75 | 26 | oveq2i |  |-  ( ( 2 x. C ) / ( 2 x. 2 ) ) = ( ( 2 x. C ) / 4 ) | 
						
							| 76 | 2 29 29 32 32 | divcan5d |  |-  ( ph -> ( ( 2 x. C ) / ( 2 x. 2 ) ) = ( C / 2 ) ) | 
						
							| 77 | 75 76 | eqtr3id |  |-  ( ph -> ( ( 2 x. C ) / 4 ) = ( C / 2 ) ) | 
						
							| 78 | 74 77 | eqtr3d |  |-  ( ph -> ( 2 x. ( C / 4 ) ) = ( C / 2 ) ) | 
						
							| 79 | 73 78 | oveq12d |  |-  ( ph -> ( ( 2 x. ( ( M / 2 ) x. X ) ) - ( 2 x. ( C / 4 ) ) ) = ( ( M x. X ) - ( C / 2 ) ) ) | 
						
							| 80 | 69 79 | eqtrd |  |-  ( ph -> ( 2 x. ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) ) = ( ( M x. X ) - ( C / 2 ) ) ) | 
						
							| 81 | 80 | oveq1d |  |-  ( ph -> ( ( 2 x. ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) ) / ( 2 x. S ) ) = ( ( ( M x. X ) - ( C / 2 ) ) / ( 2 x. S ) ) ) | 
						
							| 82 | 68 81 | eqtr3d |  |-  ( ph -> ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) = ( ( ( M x. X ) - ( C / 2 ) ) / ( 2 x. S ) ) ) | 
						
							| 83 | 82 | oveq1d |  |-  ( ph -> ( ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ^ 2 ) = ( ( ( ( M x. X ) - ( C / 2 ) ) / ( 2 x. S ) ) ^ 2 ) ) | 
						
							| 84 | 18 3 | mulcld |  |-  ( ph -> ( M x. X ) e. CC ) | 
						
							| 85 | 2 | halfcld |  |-  ( ph -> ( C / 2 ) e. CC ) | 
						
							| 86 | 84 85 | subcld |  |-  ( ph -> ( ( M x. X ) - ( C / 2 ) ) e. CC ) | 
						
							| 87 | 86 16 63 | sqdivd |  |-  ( ph -> ( ( ( ( M x. X ) - ( C / 2 ) ) / ( 2 x. S ) ) ^ 2 ) = ( ( ( ( M x. X ) - ( C / 2 ) ) ^ 2 ) / ( ( 2 x. S ) ^ 2 ) ) ) | 
						
							| 88 | 18 | sqcld |  |-  ( ph -> ( M ^ 2 ) e. CC ) | 
						
							| 89 | 88 13 | mulcld |  |-  ( ph -> ( ( M ^ 2 ) x. ( X ^ 2 ) ) e. CC ) | 
						
							| 90 | 84 2 | mulcld |  |-  ( ph -> ( ( M x. X ) x. C ) e. CC ) | 
						
							| 91 | 89 90 | subcld |  |-  ( ph -> ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) - ( ( M x. X ) x. C ) ) e. CC ) | 
						
							| 92 | 2 | sqcld |  |-  ( ph -> ( C ^ 2 ) e. CC ) | 
						
							| 93 | 92 55 57 | divcld |  |-  ( ph -> ( ( C ^ 2 ) / 4 ) e. CC ) | 
						
							| 94 | 91 93 18 6 | divdird |  |-  ( ph -> ( ( ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) - ( ( M x. X ) x. C ) ) + ( ( C ^ 2 ) / 4 ) ) / M ) = ( ( ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) - ( ( M x. X ) x. C ) ) / M ) + ( ( ( C ^ 2 ) / 4 ) / M ) ) ) | 
						
							| 95 |  | binom2sub |  |-  ( ( ( M x. X ) e. CC /\ ( C / 2 ) e. CC ) -> ( ( ( M x. X ) - ( C / 2 ) ) ^ 2 ) = ( ( ( ( M x. X ) ^ 2 ) - ( 2 x. ( ( M x. X ) x. ( C / 2 ) ) ) ) + ( ( C / 2 ) ^ 2 ) ) ) | 
						
							| 96 | 84 85 95 | syl2anc |  |-  ( ph -> ( ( ( M x. X ) - ( C / 2 ) ) ^ 2 ) = ( ( ( ( M x. X ) ^ 2 ) - ( 2 x. ( ( M x. X ) x. ( C / 2 ) ) ) ) + ( ( C / 2 ) ^ 2 ) ) ) | 
						
							| 97 | 18 3 | sqmuld |  |-  ( ph -> ( ( M x. X ) ^ 2 ) = ( ( M ^ 2 ) x. ( X ^ 2 ) ) ) | 
						
							| 98 | 29 84 85 | mul12d |  |-  ( ph -> ( 2 x. ( ( M x. X ) x. ( C / 2 ) ) ) = ( ( M x. X ) x. ( 2 x. ( C / 2 ) ) ) ) | 
						
							| 99 | 2 29 32 | divcan2d |  |-  ( ph -> ( 2 x. ( C / 2 ) ) = C ) | 
						
							| 100 | 99 | oveq2d |  |-  ( ph -> ( ( M x. X ) x. ( 2 x. ( C / 2 ) ) ) = ( ( M x. X ) x. C ) ) | 
						
							| 101 | 98 100 | eqtrd |  |-  ( ph -> ( 2 x. ( ( M x. X ) x. ( C / 2 ) ) ) = ( ( M x. X ) x. C ) ) | 
						
							| 102 | 97 101 | oveq12d |  |-  ( ph -> ( ( ( M x. X ) ^ 2 ) - ( 2 x. ( ( M x. X ) x. ( C / 2 ) ) ) ) = ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) - ( ( M x. X ) x. C ) ) ) | 
						
							| 103 | 2 29 32 | sqdivd |  |-  ( ph -> ( ( C / 2 ) ^ 2 ) = ( ( C ^ 2 ) / ( 2 ^ 2 ) ) ) | 
						
							| 104 |  | sq2 |  |-  ( 2 ^ 2 ) = 4 | 
						
							| 105 | 104 | oveq2i |  |-  ( ( C ^ 2 ) / ( 2 ^ 2 ) ) = ( ( C ^ 2 ) / 4 ) | 
						
							| 106 | 103 105 | eqtrdi |  |-  ( ph -> ( ( C / 2 ) ^ 2 ) = ( ( C ^ 2 ) / 4 ) ) | 
						
							| 107 | 102 106 | oveq12d |  |-  ( ph -> ( ( ( ( M x. X ) ^ 2 ) - ( 2 x. ( ( M x. X ) x. ( C / 2 ) ) ) ) + ( ( C / 2 ) ^ 2 ) ) = ( ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) - ( ( M x. X ) x. C ) ) + ( ( C ^ 2 ) / 4 ) ) ) | 
						
							| 108 | 96 107 | eqtr2d |  |-  ( ph -> ( ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) - ( ( M x. X ) x. C ) ) + ( ( C ^ 2 ) / 4 ) ) = ( ( ( M x. X ) - ( C / 2 ) ) ^ 2 ) ) | 
						
							| 109 | 108 5 | oveq12d |  |-  ( ph -> ( ( ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) - ( ( M x. X ) x. C ) ) + ( ( C ^ 2 ) / 4 ) ) / M ) = ( ( ( ( M x. X ) - ( C / 2 ) ) ^ 2 ) / ( ( 2 x. S ) ^ 2 ) ) ) | 
						
							| 110 | 89 90 18 6 | divsubdird |  |-  ( ph -> ( ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) - ( ( M x. X ) x. C ) ) / M ) = ( ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) / M ) - ( ( ( M x. X ) x. C ) / M ) ) ) | 
						
							| 111 | 88 13 18 6 | div23d |  |-  ( ph -> ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) / M ) = ( ( ( M ^ 2 ) / M ) x. ( X ^ 2 ) ) ) | 
						
							| 112 | 18 | sqvald |  |-  ( ph -> ( M ^ 2 ) = ( M x. M ) ) | 
						
							| 113 | 112 | oveq1d |  |-  ( ph -> ( ( M ^ 2 ) / M ) = ( ( M x. M ) / M ) ) | 
						
							| 114 | 18 18 6 | divcan3d |  |-  ( ph -> ( ( M x. M ) / M ) = M ) | 
						
							| 115 | 113 114 | eqtrd |  |-  ( ph -> ( ( M ^ 2 ) / M ) = M ) | 
						
							| 116 | 115 | oveq1d |  |-  ( ph -> ( ( ( M ^ 2 ) / M ) x. ( X ^ 2 ) ) = ( M x. ( X ^ 2 ) ) ) | 
						
							| 117 | 111 116 | eqtrd |  |-  ( ph -> ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) / M ) = ( M x. ( X ^ 2 ) ) ) | 
						
							| 118 | 18 3 2 | mul32d |  |-  ( ph -> ( ( M x. X ) x. C ) = ( ( M x. C ) x. X ) ) | 
						
							| 119 | 18 2 3 | mulassd |  |-  ( ph -> ( ( M x. C ) x. X ) = ( M x. ( C x. X ) ) ) | 
						
							| 120 | 118 119 | eqtrd |  |-  ( ph -> ( ( M x. X ) x. C ) = ( M x. ( C x. X ) ) ) | 
						
							| 121 | 120 | oveq1d |  |-  ( ph -> ( ( ( M x. X ) x. C ) / M ) = ( ( M x. ( C x. X ) ) / M ) ) | 
						
							| 122 | 2 3 | mulcld |  |-  ( ph -> ( C x. X ) e. CC ) | 
						
							| 123 | 122 18 6 | divcan3d |  |-  ( ph -> ( ( M x. ( C x. X ) ) / M ) = ( C x. X ) ) | 
						
							| 124 | 121 123 | eqtrd |  |-  ( ph -> ( ( ( M x. X ) x. C ) / M ) = ( C x. X ) ) | 
						
							| 125 | 117 124 | oveq12d |  |-  ( ph -> ( ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) / M ) - ( ( ( M x. X ) x. C ) / M ) ) = ( ( M x. ( X ^ 2 ) ) - ( C x. X ) ) ) | 
						
							| 126 | 110 125 | eqtrd |  |-  ( ph -> ( ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) - ( ( M x. X ) x. C ) ) / M ) = ( ( M x. ( X ^ 2 ) ) - ( C x. X ) ) ) | 
						
							| 127 | 126 | oveq1d |  |-  ( ph -> ( ( ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) - ( ( M x. X ) x. C ) ) / M ) + ( ( ( C ^ 2 ) / 4 ) / M ) ) = ( ( ( M x. ( X ^ 2 ) ) - ( C x. X ) ) + ( ( ( C ^ 2 ) / 4 ) / M ) ) ) | 
						
							| 128 | 93 18 6 | divcld |  |-  ( ph -> ( ( ( C ^ 2 ) / 4 ) / M ) e. CC ) | 
						
							| 129 | 43 122 128 | subsubd |  |-  ( ph -> ( ( M x. ( X ^ 2 ) ) - ( ( C x. X ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) ) = ( ( ( M x. ( X ^ 2 ) ) - ( C x. X ) ) + ( ( ( C ^ 2 ) / 4 ) / M ) ) ) | 
						
							| 130 | 127 129 | eqtr4d |  |-  ( ph -> ( ( ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) - ( ( M x. X ) x. C ) ) / M ) + ( ( ( C ^ 2 ) / 4 ) / M ) ) = ( ( M x. ( X ^ 2 ) ) - ( ( C x. X ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) ) ) | 
						
							| 131 | 94 109 130 | 3eqtr3d |  |-  ( ph -> ( ( ( ( M x. X ) - ( C / 2 ) ) ^ 2 ) / ( ( 2 x. S ) ^ 2 ) ) = ( ( M x. ( X ^ 2 ) ) - ( ( C x. X ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) ) ) | 
						
							| 132 | 83 87 131 | 3eqtrd |  |-  ( ph -> ( ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ^ 2 ) = ( ( M x. ( X ^ 2 ) ) - ( ( C x. X ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) ) ) | 
						
							| 133 | 51 132 | oveq12d |  |-  ( ph -> ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) ^ 2 ) - ( ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ^ 2 ) ) = ( ( ( M x. ( X ^ 2 ) ) + ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) ) - ( ( M x. ( X ^ 2 ) ) - ( ( C x. X ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) ) ) ) | 
						
							| 134 | 48 49 | addcld |  |-  ( ph -> ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) e. CC ) | 
						
							| 135 | 122 128 | subcld |  |-  ( ph -> ( ( C x. X ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) e. CC ) | 
						
							| 136 | 43 134 135 | pnncand |  |-  ( ph -> ( ( ( M x. ( X ^ 2 ) ) + ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) ) - ( ( M x. ( X ^ 2 ) ) - ( ( C x. X ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) ) ) = ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) + ( ( C x. X ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) ) ) | 
						
							| 137 | 128 | negcld |  |-  ( ph -> -u ( ( ( C ^ 2 ) / 4 ) / M ) e. CC ) | 
						
							| 138 | 48 49 122 137 | add4d |  |-  ( ph -> ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) + ( ( C x. X ) + -u ( ( ( C ^ 2 ) / 4 ) / M ) ) ) = ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( C x. X ) ) + ( ( ( ( M + B ) / 2 ) ^ 2 ) + -u ( ( ( C ^ 2 ) / 4 ) / M ) ) ) ) | 
						
							| 139 | 122 128 | negsubd |  |-  ( ph -> ( ( C x. X ) + -u ( ( ( C ^ 2 ) / 4 ) / M ) ) = ( ( C x. X ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) ) | 
						
							| 140 | 139 | oveq2d |  |-  ( ph -> ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) + ( ( C x. X ) + -u ( ( ( C ^ 2 ) / 4 ) / M ) ) ) = ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) + ( ( C x. X ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) ) ) | 
						
							| 141 | 49 128 | negsubd |  |-  ( ph -> ( ( ( ( M + B ) / 2 ) ^ 2 ) + -u ( ( ( C ^ 2 ) / 4 ) / M ) ) = ( ( ( ( M + B ) / 2 ) ^ 2 ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) ) | 
						
							| 142 | 1 2 3 4 5 6 7 8 9 10 | dquartlem2 |  |-  ( ph -> ( ( ( ( M + B ) / 2 ) ^ 2 ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) = D ) | 
						
							| 143 | 141 142 | eqtrd |  |-  ( ph -> ( ( ( ( M + B ) / 2 ) ^ 2 ) + -u ( ( ( C ^ 2 ) / 4 ) / M ) ) = D ) | 
						
							| 144 | 143 | oveq2d |  |-  ( ph -> ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( C x. X ) ) + ( ( ( ( M + B ) / 2 ) ^ 2 ) + -u ( ( ( C ^ 2 ) / 4 ) / M ) ) ) = ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( C x. X ) ) + D ) ) | 
						
							| 145 | 48 122 9 | addassd |  |-  ( ph -> ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( C x. X ) ) + D ) = ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( C x. X ) + D ) ) ) | 
						
							| 146 | 144 145 | eqtrd |  |-  ( ph -> ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( C x. X ) ) + ( ( ( ( M + B ) / 2 ) ^ 2 ) + -u ( ( ( C ^ 2 ) / 4 ) / M ) ) ) = ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( C x. X ) + D ) ) ) | 
						
							| 147 | 138 140 146 | 3eqtr3d |  |-  ( ph -> ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) + ( ( C x. X ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) ) = ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( C x. X ) + D ) ) ) | 
						
							| 148 | 133 136 147 | 3eqtrd |  |-  ( ph -> ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) ^ 2 ) - ( ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ^ 2 ) ) = ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( C x. X ) + D ) ) ) | 
						
							| 149 | 13 20 | addcld |  |-  ( ph -> ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) e. CC ) | 
						
							| 150 | 59 4 67 | divcld |  |-  ( ph -> ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) e. CC ) | 
						
							| 151 |  | subsq |  |-  ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) e. CC /\ ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) e. CC ) -> ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) ^ 2 ) - ( ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ^ 2 ) ) = ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) x. ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) ) ) | 
						
							| 152 | 149 150 151 | syl2anc |  |-  ( ph -> ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) ^ 2 ) - ( ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ^ 2 ) ) = ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) x. ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) ) ) | 
						
							| 153 | 148 152 | eqtr3d |  |-  ( ph -> ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( C x. X ) + D ) ) = ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) x. ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) ) ) | 
						
							| 154 | 153 | eqeq1d |  |-  ( ph -> ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( C x. X ) + D ) ) = 0 <-> ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) x. ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) ) = 0 ) ) | 
						
							| 155 | 149 150 | addcld |  |-  ( ph -> ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) e. CC ) | 
						
							| 156 | 149 150 | subcld |  |-  ( ph -> ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) e. CC ) | 
						
							| 157 | 155 156 | mul0ord |  |-  ( ph -> ( ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) x. ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) ) = 0 <-> ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) = 0 \/ ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) = 0 ) ) ) | 
						
							| 158 | 1 2 3 4 5 6 7 8 | dquartlem1 |  |-  ( ph -> ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) = 0 <-> ( X = ( -u S + I ) \/ X = ( -u S - I ) ) ) ) | 
						
							| 159 | 4 | negcld |  |-  ( ph -> -u S e. CC ) | 
						
							| 160 |  | sqneg |  |-  ( ( 2 x. S ) e. CC -> ( -u ( 2 x. S ) ^ 2 ) = ( ( 2 x. S ) ^ 2 ) ) | 
						
							| 161 | 16 160 | syl |  |-  ( ph -> ( -u ( 2 x. S ) ^ 2 ) = ( ( 2 x. S ) ^ 2 ) ) | 
						
							| 162 | 5 161 | eqtr4d |  |-  ( ph -> M = ( -u ( 2 x. S ) ^ 2 ) ) | 
						
							| 163 |  | mulneg2 |  |-  ( ( 2 e. CC /\ S e. CC ) -> ( 2 x. -u S ) = -u ( 2 x. S ) ) | 
						
							| 164 | 14 4 163 | sylancr |  |-  ( ph -> ( 2 x. -u S ) = -u ( 2 x. S ) ) | 
						
							| 165 | 164 | oveq1d |  |-  ( ph -> ( ( 2 x. -u S ) ^ 2 ) = ( -u ( 2 x. S ) ^ 2 ) ) | 
						
							| 166 | 162 165 | eqtr4d |  |-  ( ph -> M = ( ( 2 x. -u S ) ^ 2 ) ) | 
						
							| 167 | 4 | sqcld |  |-  ( ph -> ( S ^ 2 ) e. CC ) | 
						
							| 168 | 167 | negcld |  |-  ( ph -> -u ( S ^ 2 ) e. CC ) | 
						
							| 169 | 1 | halfcld |  |-  ( ph -> ( B / 2 ) e. CC ) | 
						
							| 170 | 168 169 | subcld |  |-  ( ph -> ( -u ( S ^ 2 ) - ( B / 2 ) ) e. CC ) | 
						
							| 171 | 58 4 67 | divcld |  |-  ( ph -> ( ( C / 4 ) / S ) e. CC ) | 
						
							| 172 | 170 171 | negsubd |  |-  ( ph -> ( ( -u ( S ^ 2 ) - ( B / 2 ) ) + -u ( ( C / 4 ) / S ) ) = ( ( -u ( S ^ 2 ) - ( B / 2 ) ) - ( ( C / 4 ) / S ) ) ) | 
						
							| 173 |  | sqneg |  |-  ( S e. CC -> ( -u S ^ 2 ) = ( S ^ 2 ) ) | 
						
							| 174 | 4 173 | syl |  |-  ( ph -> ( -u S ^ 2 ) = ( S ^ 2 ) ) | 
						
							| 175 | 174 | eqcomd |  |-  ( ph -> ( S ^ 2 ) = ( -u S ^ 2 ) ) | 
						
							| 176 | 175 | negeqd |  |-  ( ph -> -u ( S ^ 2 ) = -u ( -u S ^ 2 ) ) | 
						
							| 177 | 176 | oveq1d |  |-  ( ph -> ( -u ( S ^ 2 ) - ( B / 2 ) ) = ( -u ( -u S ^ 2 ) - ( B / 2 ) ) ) | 
						
							| 178 | 58 4 67 | divneg2d |  |-  ( ph -> -u ( ( C / 4 ) / S ) = ( ( C / 4 ) / -u S ) ) | 
						
							| 179 | 177 178 | oveq12d |  |-  ( ph -> ( ( -u ( S ^ 2 ) - ( B / 2 ) ) + -u ( ( C / 4 ) / S ) ) = ( ( -u ( -u S ^ 2 ) - ( B / 2 ) ) + ( ( C / 4 ) / -u S ) ) ) | 
						
							| 180 | 12 172 179 | 3eqtr2d |  |-  ( ph -> ( J ^ 2 ) = ( ( -u ( -u S ^ 2 ) - ( B / 2 ) ) + ( ( C / 4 ) / -u S ) ) ) | 
						
							| 181 | 1 2 3 159 166 6 11 180 | dquartlem1 |  |-  ( ph -> ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / -u S ) ) = 0 <-> ( X = ( -u -u S + J ) \/ X = ( -u -u S - J ) ) ) ) | 
						
							| 182 | 59 4 67 | divneg2d |  |-  ( ph -> -u ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) = ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / -u S ) ) | 
						
							| 183 | 182 | oveq2d |  |-  ( ph -> ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + -u ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) = ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / -u S ) ) ) | 
						
							| 184 | 149 150 | negsubd |  |-  ( ph -> ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + -u ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) = ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) ) | 
						
							| 185 | 183 184 | eqtr3d |  |-  ( ph -> ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / -u S ) ) = ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) ) | 
						
							| 186 | 185 | eqeq1d |  |-  ( ph -> ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / -u S ) ) = 0 <-> ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) = 0 ) ) | 
						
							| 187 | 4 | negnegd |  |-  ( ph -> -u -u S = S ) | 
						
							| 188 | 187 | oveq1d |  |-  ( ph -> ( -u -u S + J ) = ( S + J ) ) | 
						
							| 189 | 188 | eqeq2d |  |-  ( ph -> ( X = ( -u -u S + J ) <-> X = ( S + J ) ) ) | 
						
							| 190 | 187 | oveq1d |  |-  ( ph -> ( -u -u S - J ) = ( S - J ) ) | 
						
							| 191 | 190 | eqeq2d |  |-  ( ph -> ( X = ( -u -u S - J ) <-> X = ( S - J ) ) ) | 
						
							| 192 | 189 191 | orbi12d |  |-  ( ph -> ( ( X = ( -u -u S + J ) \/ X = ( -u -u S - J ) ) <-> ( X = ( S + J ) \/ X = ( S - J ) ) ) ) | 
						
							| 193 | 181 186 192 | 3bitr3d |  |-  ( ph -> ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) = 0 <-> ( X = ( S + J ) \/ X = ( S - J ) ) ) ) | 
						
							| 194 | 158 193 | orbi12d |  |-  ( ph -> ( ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) = 0 \/ ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) = 0 ) <-> ( ( X = ( -u S + I ) \/ X = ( -u S - I ) ) \/ ( X = ( S + J ) \/ X = ( S - J ) ) ) ) ) | 
						
							| 195 | 154 157 194 | 3bitrd |  |-  ( ph -> ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( C x. X ) + D ) ) = 0 <-> ( ( X = ( -u S + I ) \/ X = ( -u S - I ) ) \/ ( X = ( S + J ) \/ X = ( S - J ) ) ) ) ) |