| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dquart.b |
|- ( ph -> B e. CC ) |
| 2 |
|
dquart.c |
|- ( ph -> C e. CC ) |
| 3 |
|
dquart.x |
|- ( ph -> X e. CC ) |
| 4 |
|
dquart.s |
|- ( ph -> S e. CC ) |
| 5 |
|
dquart.m |
|- ( ph -> M = ( ( 2 x. S ) ^ 2 ) ) |
| 6 |
|
dquart.m0 |
|- ( ph -> M =/= 0 ) |
| 7 |
|
dquart.i |
|- ( ph -> I e. CC ) |
| 8 |
|
dquart.i2 |
|- ( ph -> ( I ^ 2 ) = ( ( -u ( S ^ 2 ) - ( B / 2 ) ) + ( ( C / 4 ) / S ) ) ) |
| 9 |
|
dquart.d |
|- ( ph -> D e. CC ) |
| 10 |
|
dquart.3 |
|- ( ph -> ( ( ( M ^ 3 ) + ( ( 2 x. B ) x. ( M ^ 2 ) ) ) + ( ( ( ( B ^ 2 ) - ( 4 x. D ) ) x. M ) + -u ( C ^ 2 ) ) ) = 0 ) |
| 11 |
|
dquart.j |
|- ( ph -> J e. CC ) |
| 12 |
|
dquart.j2 |
|- ( ph -> ( J ^ 2 ) = ( ( -u ( S ^ 2 ) - ( B / 2 ) ) - ( ( C / 4 ) / S ) ) ) |
| 13 |
3
|
sqcld |
|- ( ph -> ( X ^ 2 ) e. CC ) |
| 14 |
|
2cn |
|- 2 e. CC |
| 15 |
|
mulcl |
|- ( ( 2 e. CC /\ S e. CC ) -> ( 2 x. S ) e. CC ) |
| 16 |
14 4 15
|
sylancr |
|- ( ph -> ( 2 x. S ) e. CC ) |
| 17 |
16
|
sqcld |
|- ( ph -> ( ( 2 x. S ) ^ 2 ) e. CC ) |
| 18 |
5 17
|
eqeltrd |
|- ( ph -> M e. CC ) |
| 19 |
18 1
|
addcld |
|- ( ph -> ( M + B ) e. CC ) |
| 20 |
19
|
halfcld |
|- ( ph -> ( ( M + B ) / 2 ) e. CC ) |
| 21 |
|
binom2 |
|- ( ( ( X ^ 2 ) e. CC /\ ( ( M + B ) / 2 ) e. CC ) -> ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) ^ 2 ) = ( ( ( ( X ^ 2 ) ^ 2 ) + ( 2 x. ( ( X ^ 2 ) x. ( ( M + B ) / 2 ) ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) ) |
| 22 |
13 20 21
|
syl2anc |
|- ( ph -> ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) ^ 2 ) = ( ( ( ( X ^ 2 ) ^ 2 ) + ( 2 x. ( ( X ^ 2 ) x. ( ( M + B ) / 2 ) ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) ) |
| 23 |
|
2nn0 |
|- 2 e. NN0 |
| 24 |
23
|
a1i |
|- ( ph -> 2 e. NN0 ) |
| 25 |
3 24 24
|
expmuld |
|- ( ph -> ( X ^ ( 2 x. 2 ) ) = ( ( X ^ 2 ) ^ 2 ) ) |
| 26 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
| 27 |
26
|
oveq2i |
|- ( X ^ ( 2 x. 2 ) ) = ( X ^ 4 ) |
| 28 |
25 27
|
eqtr3di |
|- ( ph -> ( ( X ^ 2 ) ^ 2 ) = ( X ^ 4 ) ) |
| 29 |
14
|
a1i |
|- ( ph -> 2 e. CC ) |
| 30 |
29 13 20
|
mul12d |
|- ( ph -> ( 2 x. ( ( X ^ 2 ) x. ( ( M + B ) / 2 ) ) ) = ( ( X ^ 2 ) x. ( 2 x. ( ( M + B ) / 2 ) ) ) ) |
| 31 |
|
2ne0 |
|- 2 =/= 0 |
| 32 |
31
|
a1i |
|- ( ph -> 2 =/= 0 ) |
| 33 |
19 29 32
|
divcan2d |
|- ( ph -> ( 2 x. ( ( M + B ) / 2 ) ) = ( M + B ) ) |
| 34 |
33
|
oveq2d |
|- ( ph -> ( ( X ^ 2 ) x. ( 2 x. ( ( M + B ) / 2 ) ) ) = ( ( X ^ 2 ) x. ( M + B ) ) ) |
| 35 |
13 19
|
mulcomd |
|- ( ph -> ( ( X ^ 2 ) x. ( M + B ) ) = ( ( M + B ) x. ( X ^ 2 ) ) ) |
| 36 |
34 35
|
eqtrd |
|- ( ph -> ( ( X ^ 2 ) x. ( 2 x. ( ( M + B ) / 2 ) ) ) = ( ( M + B ) x. ( X ^ 2 ) ) ) |
| 37 |
18 1 13
|
adddird |
|- ( ph -> ( ( M + B ) x. ( X ^ 2 ) ) = ( ( M x. ( X ^ 2 ) ) + ( B x. ( X ^ 2 ) ) ) ) |
| 38 |
30 36 37
|
3eqtrd |
|- ( ph -> ( 2 x. ( ( X ^ 2 ) x. ( ( M + B ) / 2 ) ) ) = ( ( M x. ( X ^ 2 ) ) + ( B x. ( X ^ 2 ) ) ) ) |
| 39 |
28 38
|
oveq12d |
|- ( ph -> ( ( ( X ^ 2 ) ^ 2 ) + ( 2 x. ( ( X ^ 2 ) x. ( ( M + B ) / 2 ) ) ) ) = ( ( X ^ 4 ) + ( ( M x. ( X ^ 2 ) ) + ( B x. ( X ^ 2 ) ) ) ) ) |
| 40 |
|
4nn0 |
|- 4 e. NN0 |
| 41 |
|
expcl |
|- ( ( X e. CC /\ 4 e. NN0 ) -> ( X ^ 4 ) e. CC ) |
| 42 |
3 40 41
|
sylancl |
|- ( ph -> ( X ^ 4 ) e. CC ) |
| 43 |
18 13
|
mulcld |
|- ( ph -> ( M x. ( X ^ 2 ) ) e. CC ) |
| 44 |
1 13
|
mulcld |
|- ( ph -> ( B x. ( X ^ 2 ) ) e. CC ) |
| 45 |
42 43 44
|
add12d |
|- ( ph -> ( ( X ^ 4 ) + ( ( M x. ( X ^ 2 ) ) + ( B x. ( X ^ 2 ) ) ) ) = ( ( M x. ( X ^ 2 ) ) + ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) ) ) |
| 46 |
39 45
|
eqtrd |
|- ( ph -> ( ( ( X ^ 2 ) ^ 2 ) + ( 2 x. ( ( X ^ 2 ) x. ( ( M + B ) / 2 ) ) ) ) = ( ( M x. ( X ^ 2 ) ) + ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) ) ) |
| 47 |
46
|
oveq1d |
|- ( ph -> ( ( ( ( X ^ 2 ) ^ 2 ) + ( 2 x. ( ( X ^ 2 ) x. ( ( M + B ) / 2 ) ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) = ( ( ( M x. ( X ^ 2 ) ) + ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) ) |
| 48 |
42 44
|
addcld |
|- ( ph -> ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) e. CC ) |
| 49 |
20
|
sqcld |
|- ( ph -> ( ( ( M + B ) / 2 ) ^ 2 ) e. CC ) |
| 50 |
43 48 49
|
addassd |
|- ( ph -> ( ( ( M x. ( X ^ 2 ) ) + ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) = ( ( M x. ( X ^ 2 ) ) + ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) ) ) |
| 51 |
22 47 50
|
3eqtrd |
|- ( ph -> ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) ^ 2 ) = ( ( M x. ( X ^ 2 ) ) + ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) ) ) |
| 52 |
18
|
halfcld |
|- ( ph -> ( M / 2 ) e. CC ) |
| 53 |
52 3
|
mulcld |
|- ( ph -> ( ( M / 2 ) x. X ) e. CC ) |
| 54 |
|
4cn |
|- 4 e. CC |
| 55 |
54
|
a1i |
|- ( ph -> 4 e. CC ) |
| 56 |
|
4ne0 |
|- 4 =/= 0 |
| 57 |
56
|
a1i |
|- ( ph -> 4 =/= 0 ) |
| 58 |
2 55 57
|
divcld |
|- ( ph -> ( C / 4 ) e. CC ) |
| 59 |
53 58
|
subcld |
|- ( ph -> ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) e. CC ) |
| 60 |
5 6
|
eqnetrrd |
|- ( ph -> ( ( 2 x. S ) ^ 2 ) =/= 0 ) |
| 61 |
|
sqne0 |
|- ( ( 2 x. S ) e. CC -> ( ( ( 2 x. S ) ^ 2 ) =/= 0 <-> ( 2 x. S ) =/= 0 ) ) |
| 62 |
16 61
|
syl |
|- ( ph -> ( ( ( 2 x. S ) ^ 2 ) =/= 0 <-> ( 2 x. S ) =/= 0 ) ) |
| 63 |
60 62
|
mpbid |
|- ( ph -> ( 2 x. S ) =/= 0 ) |
| 64 |
|
mulne0b |
|- ( ( 2 e. CC /\ S e. CC ) -> ( ( 2 =/= 0 /\ S =/= 0 ) <-> ( 2 x. S ) =/= 0 ) ) |
| 65 |
14 4 64
|
sylancr |
|- ( ph -> ( ( 2 =/= 0 /\ S =/= 0 ) <-> ( 2 x. S ) =/= 0 ) ) |
| 66 |
63 65
|
mpbird |
|- ( ph -> ( 2 =/= 0 /\ S =/= 0 ) ) |
| 67 |
66
|
simprd |
|- ( ph -> S =/= 0 ) |
| 68 |
59 4 29 67 32
|
divcan5d |
|- ( ph -> ( ( 2 x. ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) ) / ( 2 x. S ) ) = ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) |
| 69 |
29 53 58
|
subdid |
|- ( ph -> ( 2 x. ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) ) = ( ( 2 x. ( ( M / 2 ) x. X ) ) - ( 2 x. ( C / 4 ) ) ) ) |
| 70 |
29 52 3
|
mulassd |
|- ( ph -> ( ( 2 x. ( M / 2 ) ) x. X ) = ( 2 x. ( ( M / 2 ) x. X ) ) ) |
| 71 |
18 29 32
|
divcan2d |
|- ( ph -> ( 2 x. ( M / 2 ) ) = M ) |
| 72 |
71
|
oveq1d |
|- ( ph -> ( ( 2 x. ( M / 2 ) ) x. X ) = ( M x. X ) ) |
| 73 |
70 72
|
eqtr3d |
|- ( ph -> ( 2 x. ( ( M / 2 ) x. X ) ) = ( M x. X ) ) |
| 74 |
29 2 55 57
|
divassd |
|- ( ph -> ( ( 2 x. C ) / 4 ) = ( 2 x. ( C / 4 ) ) ) |
| 75 |
26
|
oveq2i |
|- ( ( 2 x. C ) / ( 2 x. 2 ) ) = ( ( 2 x. C ) / 4 ) |
| 76 |
2 29 29 32 32
|
divcan5d |
|- ( ph -> ( ( 2 x. C ) / ( 2 x. 2 ) ) = ( C / 2 ) ) |
| 77 |
75 76
|
eqtr3id |
|- ( ph -> ( ( 2 x. C ) / 4 ) = ( C / 2 ) ) |
| 78 |
74 77
|
eqtr3d |
|- ( ph -> ( 2 x. ( C / 4 ) ) = ( C / 2 ) ) |
| 79 |
73 78
|
oveq12d |
|- ( ph -> ( ( 2 x. ( ( M / 2 ) x. X ) ) - ( 2 x. ( C / 4 ) ) ) = ( ( M x. X ) - ( C / 2 ) ) ) |
| 80 |
69 79
|
eqtrd |
|- ( ph -> ( 2 x. ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) ) = ( ( M x. X ) - ( C / 2 ) ) ) |
| 81 |
80
|
oveq1d |
|- ( ph -> ( ( 2 x. ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) ) / ( 2 x. S ) ) = ( ( ( M x. X ) - ( C / 2 ) ) / ( 2 x. S ) ) ) |
| 82 |
68 81
|
eqtr3d |
|- ( ph -> ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) = ( ( ( M x. X ) - ( C / 2 ) ) / ( 2 x. S ) ) ) |
| 83 |
82
|
oveq1d |
|- ( ph -> ( ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ^ 2 ) = ( ( ( ( M x. X ) - ( C / 2 ) ) / ( 2 x. S ) ) ^ 2 ) ) |
| 84 |
18 3
|
mulcld |
|- ( ph -> ( M x. X ) e. CC ) |
| 85 |
2
|
halfcld |
|- ( ph -> ( C / 2 ) e. CC ) |
| 86 |
84 85
|
subcld |
|- ( ph -> ( ( M x. X ) - ( C / 2 ) ) e. CC ) |
| 87 |
86 16 63
|
sqdivd |
|- ( ph -> ( ( ( ( M x. X ) - ( C / 2 ) ) / ( 2 x. S ) ) ^ 2 ) = ( ( ( ( M x. X ) - ( C / 2 ) ) ^ 2 ) / ( ( 2 x. S ) ^ 2 ) ) ) |
| 88 |
18
|
sqcld |
|- ( ph -> ( M ^ 2 ) e. CC ) |
| 89 |
88 13
|
mulcld |
|- ( ph -> ( ( M ^ 2 ) x. ( X ^ 2 ) ) e. CC ) |
| 90 |
84 2
|
mulcld |
|- ( ph -> ( ( M x. X ) x. C ) e. CC ) |
| 91 |
89 90
|
subcld |
|- ( ph -> ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) - ( ( M x. X ) x. C ) ) e. CC ) |
| 92 |
2
|
sqcld |
|- ( ph -> ( C ^ 2 ) e. CC ) |
| 93 |
92 55 57
|
divcld |
|- ( ph -> ( ( C ^ 2 ) / 4 ) e. CC ) |
| 94 |
91 93 18 6
|
divdird |
|- ( ph -> ( ( ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) - ( ( M x. X ) x. C ) ) + ( ( C ^ 2 ) / 4 ) ) / M ) = ( ( ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) - ( ( M x. X ) x. C ) ) / M ) + ( ( ( C ^ 2 ) / 4 ) / M ) ) ) |
| 95 |
|
binom2sub |
|- ( ( ( M x. X ) e. CC /\ ( C / 2 ) e. CC ) -> ( ( ( M x. X ) - ( C / 2 ) ) ^ 2 ) = ( ( ( ( M x. X ) ^ 2 ) - ( 2 x. ( ( M x. X ) x. ( C / 2 ) ) ) ) + ( ( C / 2 ) ^ 2 ) ) ) |
| 96 |
84 85 95
|
syl2anc |
|- ( ph -> ( ( ( M x. X ) - ( C / 2 ) ) ^ 2 ) = ( ( ( ( M x. X ) ^ 2 ) - ( 2 x. ( ( M x. X ) x. ( C / 2 ) ) ) ) + ( ( C / 2 ) ^ 2 ) ) ) |
| 97 |
18 3
|
sqmuld |
|- ( ph -> ( ( M x. X ) ^ 2 ) = ( ( M ^ 2 ) x. ( X ^ 2 ) ) ) |
| 98 |
29 84 85
|
mul12d |
|- ( ph -> ( 2 x. ( ( M x. X ) x. ( C / 2 ) ) ) = ( ( M x. X ) x. ( 2 x. ( C / 2 ) ) ) ) |
| 99 |
2 29 32
|
divcan2d |
|- ( ph -> ( 2 x. ( C / 2 ) ) = C ) |
| 100 |
99
|
oveq2d |
|- ( ph -> ( ( M x. X ) x. ( 2 x. ( C / 2 ) ) ) = ( ( M x. X ) x. C ) ) |
| 101 |
98 100
|
eqtrd |
|- ( ph -> ( 2 x. ( ( M x. X ) x. ( C / 2 ) ) ) = ( ( M x. X ) x. C ) ) |
| 102 |
97 101
|
oveq12d |
|- ( ph -> ( ( ( M x. X ) ^ 2 ) - ( 2 x. ( ( M x. X ) x. ( C / 2 ) ) ) ) = ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) - ( ( M x. X ) x. C ) ) ) |
| 103 |
2 29 32
|
sqdivd |
|- ( ph -> ( ( C / 2 ) ^ 2 ) = ( ( C ^ 2 ) / ( 2 ^ 2 ) ) ) |
| 104 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
| 105 |
104
|
oveq2i |
|- ( ( C ^ 2 ) / ( 2 ^ 2 ) ) = ( ( C ^ 2 ) / 4 ) |
| 106 |
103 105
|
eqtrdi |
|- ( ph -> ( ( C / 2 ) ^ 2 ) = ( ( C ^ 2 ) / 4 ) ) |
| 107 |
102 106
|
oveq12d |
|- ( ph -> ( ( ( ( M x. X ) ^ 2 ) - ( 2 x. ( ( M x. X ) x. ( C / 2 ) ) ) ) + ( ( C / 2 ) ^ 2 ) ) = ( ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) - ( ( M x. X ) x. C ) ) + ( ( C ^ 2 ) / 4 ) ) ) |
| 108 |
96 107
|
eqtr2d |
|- ( ph -> ( ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) - ( ( M x. X ) x. C ) ) + ( ( C ^ 2 ) / 4 ) ) = ( ( ( M x. X ) - ( C / 2 ) ) ^ 2 ) ) |
| 109 |
108 5
|
oveq12d |
|- ( ph -> ( ( ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) - ( ( M x. X ) x. C ) ) + ( ( C ^ 2 ) / 4 ) ) / M ) = ( ( ( ( M x. X ) - ( C / 2 ) ) ^ 2 ) / ( ( 2 x. S ) ^ 2 ) ) ) |
| 110 |
89 90 18 6
|
divsubdird |
|- ( ph -> ( ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) - ( ( M x. X ) x. C ) ) / M ) = ( ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) / M ) - ( ( ( M x. X ) x. C ) / M ) ) ) |
| 111 |
88 13 18 6
|
div23d |
|- ( ph -> ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) / M ) = ( ( ( M ^ 2 ) / M ) x. ( X ^ 2 ) ) ) |
| 112 |
18
|
sqvald |
|- ( ph -> ( M ^ 2 ) = ( M x. M ) ) |
| 113 |
112
|
oveq1d |
|- ( ph -> ( ( M ^ 2 ) / M ) = ( ( M x. M ) / M ) ) |
| 114 |
18 18 6
|
divcan3d |
|- ( ph -> ( ( M x. M ) / M ) = M ) |
| 115 |
113 114
|
eqtrd |
|- ( ph -> ( ( M ^ 2 ) / M ) = M ) |
| 116 |
115
|
oveq1d |
|- ( ph -> ( ( ( M ^ 2 ) / M ) x. ( X ^ 2 ) ) = ( M x. ( X ^ 2 ) ) ) |
| 117 |
111 116
|
eqtrd |
|- ( ph -> ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) / M ) = ( M x. ( X ^ 2 ) ) ) |
| 118 |
18 3 2
|
mul32d |
|- ( ph -> ( ( M x. X ) x. C ) = ( ( M x. C ) x. X ) ) |
| 119 |
18 2 3
|
mulassd |
|- ( ph -> ( ( M x. C ) x. X ) = ( M x. ( C x. X ) ) ) |
| 120 |
118 119
|
eqtrd |
|- ( ph -> ( ( M x. X ) x. C ) = ( M x. ( C x. X ) ) ) |
| 121 |
120
|
oveq1d |
|- ( ph -> ( ( ( M x. X ) x. C ) / M ) = ( ( M x. ( C x. X ) ) / M ) ) |
| 122 |
2 3
|
mulcld |
|- ( ph -> ( C x. X ) e. CC ) |
| 123 |
122 18 6
|
divcan3d |
|- ( ph -> ( ( M x. ( C x. X ) ) / M ) = ( C x. X ) ) |
| 124 |
121 123
|
eqtrd |
|- ( ph -> ( ( ( M x. X ) x. C ) / M ) = ( C x. X ) ) |
| 125 |
117 124
|
oveq12d |
|- ( ph -> ( ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) / M ) - ( ( ( M x. X ) x. C ) / M ) ) = ( ( M x. ( X ^ 2 ) ) - ( C x. X ) ) ) |
| 126 |
110 125
|
eqtrd |
|- ( ph -> ( ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) - ( ( M x. X ) x. C ) ) / M ) = ( ( M x. ( X ^ 2 ) ) - ( C x. X ) ) ) |
| 127 |
126
|
oveq1d |
|- ( ph -> ( ( ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) - ( ( M x. X ) x. C ) ) / M ) + ( ( ( C ^ 2 ) / 4 ) / M ) ) = ( ( ( M x. ( X ^ 2 ) ) - ( C x. X ) ) + ( ( ( C ^ 2 ) / 4 ) / M ) ) ) |
| 128 |
93 18 6
|
divcld |
|- ( ph -> ( ( ( C ^ 2 ) / 4 ) / M ) e. CC ) |
| 129 |
43 122 128
|
subsubd |
|- ( ph -> ( ( M x. ( X ^ 2 ) ) - ( ( C x. X ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) ) = ( ( ( M x. ( X ^ 2 ) ) - ( C x. X ) ) + ( ( ( C ^ 2 ) / 4 ) / M ) ) ) |
| 130 |
127 129
|
eqtr4d |
|- ( ph -> ( ( ( ( ( M ^ 2 ) x. ( X ^ 2 ) ) - ( ( M x. X ) x. C ) ) / M ) + ( ( ( C ^ 2 ) / 4 ) / M ) ) = ( ( M x. ( X ^ 2 ) ) - ( ( C x. X ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) ) ) |
| 131 |
94 109 130
|
3eqtr3d |
|- ( ph -> ( ( ( ( M x. X ) - ( C / 2 ) ) ^ 2 ) / ( ( 2 x. S ) ^ 2 ) ) = ( ( M x. ( X ^ 2 ) ) - ( ( C x. X ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) ) ) |
| 132 |
83 87 131
|
3eqtrd |
|- ( ph -> ( ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ^ 2 ) = ( ( M x. ( X ^ 2 ) ) - ( ( C x. X ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) ) ) |
| 133 |
51 132
|
oveq12d |
|- ( ph -> ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) ^ 2 ) - ( ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ^ 2 ) ) = ( ( ( M x. ( X ^ 2 ) ) + ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) ) - ( ( M x. ( X ^ 2 ) ) - ( ( C x. X ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) ) ) ) |
| 134 |
48 49
|
addcld |
|- ( ph -> ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) e. CC ) |
| 135 |
122 128
|
subcld |
|- ( ph -> ( ( C x. X ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) e. CC ) |
| 136 |
43 134 135
|
pnncand |
|- ( ph -> ( ( ( M x. ( X ^ 2 ) ) + ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) ) - ( ( M x. ( X ^ 2 ) ) - ( ( C x. X ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) ) ) = ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) + ( ( C x. X ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) ) ) |
| 137 |
128
|
negcld |
|- ( ph -> -u ( ( ( C ^ 2 ) / 4 ) / M ) e. CC ) |
| 138 |
48 49 122 137
|
add4d |
|- ( ph -> ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) + ( ( C x. X ) + -u ( ( ( C ^ 2 ) / 4 ) / M ) ) ) = ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( C x. X ) ) + ( ( ( ( M + B ) / 2 ) ^ 2 ) + -u ( ( ( C ^ 2 ) / 4 ) / M ) ) ) ) |
| 139 |
122 128
|
negsubd |
|- ( ph -> ( ( C x. X ) + -u ( ( ( C ^ 2 ) / 4 ) / M ) ) = ( ( C x. X ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) ) |
| 140 |
139
|
oveq2d |
|- ( ph -> ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) + ( ( C x. X ) + -u ( ( ( C ^ 2 ) / 4 ) / M ) ) ) = ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) + ( ( C x. X ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) ) ) |
| 141 |
49 128
|
negsubd |
|- ( ph -> ( ( ( ( M + B ) / 2 ) ^ 2 ) + -u ( ( ( C ^ 2 ) / 4 ) / M ) ) = ( ( ( ( M + B ) / 2 ) ^ 2 ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) ) |
| 142 |
1 2 3 4 5 6 7 8 9 10
|
dquartlem2 |
|- ( ph -> ( ( ( ( M + B ) / 2 ) ^ 2 ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) = D ) |
| 143 |
141 142
|
eqtrd |
|- ( ph -> ( ( ( ( M + B ) / 2 ) ^ 2 ) + -u ( ( ( C ^ 2 ) / 4 ) / M ) ) = D ) |
| 144 |
143
|
oveq2d |
|- ( ph -> ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( C x. X ) ) + ( ( ( ( M + B ) / 2 ) ^ 2 ) + -u ( ( ( C ^ 2 ) / 4 ) / M ) ) ) = ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( C x. X ) ) + D ) ) |
| 145 |
48 122 9
|
addassd |
|- ( ph -> ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( C x. X ) ) + D ) = ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( C x. X ) + D ) ) ) |
| 146 |
144 145
|
eqtrd |
|- ( ph -> ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( C x. X ) ) + ( ( ( ( M + B ) / 2 ) ^ 2 ) + -u ( ( ( C ^ 2 ) / 4 ) / M ) ) ) = ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( C x. X ) + D ) ) ) |
| 147 |
138 140 146
|
3eqtr3d |
|- ( ph -> ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( ( M + B ) / 2 ) ^ 2 ) ) + ( ( C x. X ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) ) = ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( C x. X ) + D ) ) ) |
| 148 |
133 136 147
|
3eqtrd |
|- ( ph -> ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) ^ 2 ) - ( ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ^ 2 ) ) = ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( C x. X ) + D ) ) ) |
| 149 |
13 20
|
addcld |
|- ( ph -> ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) e. CC ) |
| 150 |
59 4 67
|
divcld |
|- ( ph -> ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) e. CC ) |
| 151 |
|
subsq |
|- ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) e. CC /\ ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) e. CC ) -> ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) ^ 2 ) - ( ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ^ 2 ) ) = ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) x. ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) ) ) |
| 152 |
149 150 151
|
syl2anc |
|- ( ph -> ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) ^ 2 ) - ( ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ^ 2 ) ) = ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) x. ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) ) ) |
| 153 |
148 152
|
eqtr3d |
|- ( ph -> ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( C x. X ) + D ) ) = ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) x. ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) ) ) |
| 154 |
153
|
eqeq1d |
|- ( ph -> ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( C x. X ) + D ) ) = 0 <-> ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) x. ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) ) = 0 ) ) |
| 155 |
149 150
|
addcld |
|- ( ph -> ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) e. CC ) |
| 156 |
149 150
|
subcld |
|- ( ph -> ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) e. CC ) |
| 157 |
155 156
|
mul0ord |
|- ( ph -> ( ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) x. ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) ) = 0 <-> ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) = 0 \/ ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) = 0 ) ) ) |
| 158 |
1 2 3 4 5 6 7 8
|
dquartlem1 |
|- ( ph -> ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) = 0 <-> ( X = ( -u S + I ) \/ X = ( -u S - I ) ) ) ) |
| 159 |
4
|
negcld |
|- ( ph -> -u S e. CC ) |
| 160 |
|
sqneg |
|- ( ( 2 x. S ) e. CC -> ( -u ( 2 x. S ) ^ 2 ) = ( ( 2 x. S ) ^ 2 ) ) |
| 161 |
16 160
|
syl |
|- ( ph -> ( -u ( 2 x. S ) ^ 2 ) = ( ( 2 x. S ) ^ 2 ) ) |
| 162 |
5 161
|
eqtr4d |
|- ( ph -> M = ( -u ( 2 x. S ) ^ 2 ) ) |
| 163 |
|
mulneg2 |
|- ( ( 2 e. CC /\ S e. CC ) -> ( 2 x. -u S ) = -u ( 2 x. S ) ) |
| 164 |
14 4 163
|
sylancr |
|- ( ph -> ( 2 x. -u S ) = -u ( 2 x. S ) ) |
| 165 |
164
|
oveq1d |
|- ( ph -> ( ( 2 x. -u S ) ^ 2 ) = ( -u ( 2 x. S ) ^ 2 ) ) |
| 166 |
162 165
|
eqtr4d |
|- ( ph -> M = ( ( 2 x. -u S ) ^ 2 ) ) |
| 167 |
4
|
sqcld |
|- ( ph -> ( S ^ 2 ) e. CC ) |
| 168 |
167
|
negcld |
|- ( ph -> -u ( S ^ 2 ) e. CC ) |
| 169 |
1
|
halfcld |
|- ( ph -> ( B / 2 ) e. CC ) |
| 170 |
168 169
|
subcld |
|- ( ph -> ( -u ( S ^ 2 ) - ( B / 2 ) ) e. CC ) |
| 171 |
58 4 67
|
divcld |
|- ( ph -> ( ( C / 4 ) / S ) e. CC ) |
| 172 |
170 171
|
negsubd |
|- ( ph -> ( ( -u ( S ^ 2 ) - ( B / 2 ) ) + -u ( ( C / 4 ) / S ) ) = ( ( -u ( S ^ 2 ) - ( B / 2 ) ) - ( ( C / 4 ) / S ) ) ) |
| 173 |
|
sqneg |
|- ( S e. CC -> ( -u S ^ 2 ) = ( S ^ 2 ) ) |
| 174 |
4 173
|
syl |
|- ( ph -> ( -u S ^ 2 ) = ( S ^ 2 ) ) |
| 175 |
174
|
eqcomd |
|- ( ph -> ( S ^ 2 ) = ( -u S ^ 2 ) ) |
| 176 |
175
|
negeqd |
|- ( ph -> -u ( S ^ 2 ) = -u ( -u S ^ 2 ) ) |
| 177 |
176
|
oveq1d |
|- ( ph -> ( -u ( S ^ 2 ) - ( B / 2 ) ) = ( -u ( -u S ^ 2 ) - ( B / 2 ) ) ) |
| 178 |
58 4 67
|
divneg2d |
|- ( ph -> -u ( ( C / 4 ) / S ) = ( ( C / 4 ) / -u S ) ) |
| 179 |
177 178
|
oveq12d |
|- ( ph -> ( ( -u ( S ^ 2 ) - ( B / 2 ) ) + -u ( ( C / 4 ) / S ) ) = ( ( -u ( -u S ^ 2 ) - ( B / 2 ) ) + ( ( C / 4 ) / -u S ) ) ) |
| 180 |
12 172 179
|
3eqtr2d |
|- ( ph -> ( J ^ 2 ) = ( ( -u ( -u S ^ 2 ) - ( B / 2 ) ) + ( ( C / 4 ) / -u S ) ) ) |
| 181 |
1 2 3 159 166 6 11 180
|
dquartlem1 |
|- ( ph -> ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / -u S ) ) = 0 <-> ( X = ( -u -u S + J ) \/ X = ( -u -u S - J ) ) ) ) |
| 182 |
59 4 67
|
divneg2d |
|- ( ph -> -u ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) = ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / -u S ) ) |
| 183 |
182
|
oveq2d |
|- ( ph -> ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + -u ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) = ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / -u S ) ) ) |
| 184 |
149 150
|
negsubd |
|- ( ph -> ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + -u ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) = ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) ) |
| 185 |
183 184
|
eqtr3d |
|- ( ph -> ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / -u S ) ) = ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) ) |
| 186 |
185
|
eqeq1d |
|- ( ph -> ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / -u S ) ) = 0 <-> ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) = 0 ) ) |
| 187 |
4
|
negnegd |
|- ( ph -> -u -u S = S ) |
| 188 |
187
|
oveq1d |
|- ( ph -> ( -u -u S + J ) = ( S + J ) ) |
| 189 |
188
|
eqeq2d |
|- ( ph -> ( X = ( -u -u S + J ) <-> X = ( S + J ) ) ) |
| 190 |
187
|
oveq1d |
|- ( ph -> ( -u -u S - J ) = ( S - J ) ) |
| 191 |
190
|
eqeq2d |
|- ( ph -> ( X = ( -u -u S - J ) <-> X = ( S - J ) ) ) |
| 192 |
189 191
|
orbi12d |
|- ( ph -> ( ( X = ( -u -u S + J ) \/ X = ( -u -u S - J ) ) <-> ( X = ( S + J ) \/ X = ( S - J ) ) ) ) |
| 193 |
181 186 192
|
3bitr3d |
|- ( ph -> ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) = 0 <-> ( X = ( S + J ) \/ X = ( S - J ) ) ) ) |
| 194 |
158 193
|
orbi12d |
|- ( ph -> ( ( ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) + ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) = 0 \/ ( ( ( X ^ 2 ) + ( ( M + B ) / 2 ) ) - ( ( ( ( M / 2 ) x. X ) - ( C / 4 ) ) / S ) ) = 0 ) <-> ( ( X = ( -u S + I ) \/ X = ( -u S - I ) ) \/ ( X = ( S + J ) \/ X = ( S - J ) ) ) ) ) |
| 195 |
154 157 194
|
3bitrd |
|- ( ph -> ( ( ( ( X ^ 4 ) + ( B x. ( X ^ 2 ) ) ) + ( ( C x. X ) + D ) ) = 0 <-> ( ( X = ( -u S + I ) \/ X = ( -u S - I ) ) \/ ( X = ( S + J ) \/ X = ( S - J ) ) ) ) ) |