| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dquart.b |  |-  ( ph -> B e. CC ) | 
						
							| 2 |  | dquart.c |  |-  ( ph -> C e. CC ) | 
						
							| 3 |  | dquart.x |  |-  ( ph -> X e. CC ) | 
						
							| 4 |  | dquart.s |  |-  ( ph -> S e. CC ) | 
						
							| 5 |  | dquart.m |  |-  ( ph -> M = ( ( 2 x. S ) ^ 2 ) ) | 
						
							| 6 |  | dquart.m0 |  |-  ( ph -> M =/= 0 ) | 
						
							| 7 |  | dquart.i |  |-  ( ph -> I e. CC ) | 
						
							| 8 |  | dquart.i2 |  |-  ( ph -> ( I ^ 2 ) = ( ( -u ( S ^ 2 ) - ( B / 2 ) ) + ( ( C / 4 ) / S ) ) ) | 
						
							| 9 |  | dquart.d |  |-  ( ph -> D e. CC ) | 
						
							| 10 |  | dquart.3 |  |-  ( ph -> ( ( ( M ^ 3 ) + ( ( 2 x. B ) x. ( M ^ 2 ) ) ) + ( ( ( ( B ^ 2 ) - ( 4 x. D ) ) x. M ) + -u ( C ^ 2 ) ) ) = 0 ) | 
						
							| 11 |  | 2cn |  |-  2 e. CC | 
						
							| 12 |  | mulcl |  |-  ( ( 2 e. CC /\ S e. CC ) -> ( 2 x. S ) e. CC ) | 
						
							| 13 | 11 4 12 | sylancr |  |-  ( ph -> ( 2 x. S ) e. CC ) | 
						
							| 14 | 13 | sqcld |  |-  ( ph -> ( ( 2 x. S ) ^ 2 ) e. CC ) | 
						
							| 15 | 5 14 | eqeltrd |  |-  ( ph -> M e. CC ) | 
						
							| 16 | 15 1 | addcld |  |-  ( ph -> ( M + B ) e. CC ) | 
						
							| 17 | 11 | a1i |  |-  ( ph -> 2 e. CC ) | 
						
							| 18 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 19 | 18 | a1i |  |-  ( ph -> 2 =/= 0 ) | 
						
							| 20 | 16 17 19 | sqdivd |  |-  ( ph -> ( ( ( M + B ) / 2 ) ^ 2 ) = ( ( ( M + B ) ^ 2 ) / ( 2 ^ 2 ) ) ) | 
						
							| 21 |  | sq2 |  |-  ( 2 ^ 2 ) = 4 | 
						
							| 22 | 21 | oveq2i |  |-  ( ( ( M + B ) ^ 2 ) / ( 2 ^ 2 ) ) = ( ( ( M + B ) ^ 2 ) / 4 ) | 
						
							| 23 | 20 22 | eqtrdi |  |-  ( ph -> ( ( ( M + B ) / 2 ) ^ 2 ) = ( ( ( M + B ) ^ 2 ) / 4 ) ) | 
						
							| 24 | 23 | oveq1d |  |-  ( ph -> ( ( ( ( M + B ) / 2 ) ^ 2 ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) = ( ( ( ( M + B ) ^ 2 ) / 4 ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) ) | 
						
							| 25 | 16 | sqcld |  |-  ( ph -> ( ( M + B ) ^ 2 ) e. CC ) | 
						
							| 26 |  | 4cn |  |-  4 e. CC | 
						
							| 27 | 26 | a1i |  |-  ( ph -> 4 e. CC ) | 
						
							| 28 |  | 4ne0 |  |-  4 =/= 0 | 
						
							| 29 | 28 | a1i |  |-  ( ph -> 4 =/= 0 ) | 
						
							| 30 | 25 27 29 | divcld |  |-  ( ph -> ( ( ( M + B ) ^ 2 ) / 4 ) e. CC ) | 
						
							| 31 | 2 | sqcld |  |-  ( ph -> ( C ^ 2 ) e. CC ) | 
						
							| 32 | 31 27 29 | divcld |  |-  ( ph -> ( ( C ^ 2 ) / 4 ) e. CC ) | 
						
							| 33 | 32 15 6 | divcld |  |-  ( ph -> ( ( ( C ^ 2 ) / 4 ) / M ) e. CC ) | 
						
							| 34 | 30 33 | subcld |  |-  ( ph -> ( ( ( ( M + B ) ^ 2 ) / 4 ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) e. CC ) | 
						
							| 35 | 30 33 15 | subdird |  |-  ( ph -> ( ( ( ( ( M + B ) ^ 2 ) / 4 ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) x. M ) = ( ( ( ( ( M + B ) ^ 2 ) / 4 ) x. M ) - ( ( ( ( C ^ 2 ) / 4 ) / M ) x. M ) ) ) | 
						
							| 36 | 25 15 27 29 | div23d |  |-  ( ph -> ( ( ( ( M + B ) ^ 2 ) x. M ) / 4 ) = ( ( ( ( M + B ) ^ 2 ) / 4 ) x. M ) ) | 
						
							| 37 | 36 | eqcomd |  |-  ( ph -> ( ( ( ( M + B ) ^ 2 ) / 4 ) x. M ) = ( ( ( ( M + B ) ^ 2 ) x. M ) / 4 ) ) | 
						
							| 38 | 32 15 6 | divcan1d |  |-  ( ph -> ( ( ( ( C ^ 2 ) / 4 ) / M ) x. M ) = ( ( C ^ 2 ) / 4 ) ) | 
						
							| 39 | 37 38 | oveq12d |  |-  ( ph -> ( ( ( ( ( M + B ) ^ 2 ) / 4 ) x. M ) - ( ( ( ( C ^ 2 ) / 4 ) / M ) x. M ) ) = ( ( ( ( ( M + B ) ^ 2 ) x. M ) / 4 ) - ( ( C ^ 2 ) / 4 ) ) ) | 
						
							| 40 |  | binom2 |  |-  ( ( M e. CC /\ B e. CC ) -> ( ( M + B ) ^ 2 ) = ( ( ( M ^ 2 ) + ( 2 x. ( M x. B ) ) ) + ( B ^ 2 ) ) ) | 
						
							| 41 | 15 1 40 | syl2anc |  |-  ( ph -> ( ( M + B ) ^ 2 ) = ( ( ( M ^ 2 ) + ( 2 x. ( M x. B ) ) ) + ( B ^ 2 ) ) ) | 
						
							| 42 | 41 | oveq1d |  |-  ( ph -> ( ( ( M + B ) ^ 2 ) x. M ) = ( ( ( ( M ^ 2 ) + ( 2 x. ( M x. B ) ) ) + ( B ^ 2 ) ) x. M ) ) | 
						
							| 43 | 15 | sqcld |  |-  ( ph -> ( M ^ 2 ) e. CC ) | 
						
							| 44 | 15 1 | mulcld |  |-  ( ph -> ( M x. B ) e. CC ) | 
						
							| 45 |  | mulcl |  |-  ( ( 2 e. CC /\ ( M x. B ) e. CC ) -> ( 2 x. ( M x. B ) ) e. CC ) | 
						
							| 46 | 11 44 45 | sylancr |  |-  ( ph -> ( 2 x. ( M x. B ) ) e. CC ) | 
						
							| 47 | 43 46 | addcld |  |-  ( ph -> ( ( M ^ 2 ) + ( 2 x. ( M x. B ) ) ) e. CC ) | 
						
							| 48 | 1 | sqcld |  |-  ( ph -> ( B ^ 2 ) e. CC ) | 
						
							| 49 | 47 48 15 | adddird |  |-  ( ph -> ( ( ( ( M ^ 2 ) + ( 2 x. ( M x. B ) ) ) + ( B ^ 2 ) ) x. M ) = ( ( ( ( M ^ 2 ) + ( 2 x. ( M x. B ) ) ) x. M ) + ( ( B ^ 2 ) x. M ) ) ) | 
						
							| 50 | 43 46 15 | adddird |  |-  ( ph -> ( ( ( M ^ 2 ) + ( 2 x. ( M x. B ) ) ) x. M ) = ( ( ( M ^ 2 ) x. M ) + ( ( 2 x. ( M x. B ) ) x. M ) ) ) | 
						
							| 51 |  | df-3 |  |-  3 = ( 2 + 1 ) | 
						
							| 52 | 51 | oveq2i |  |-  ( M ^ 3 ) = ( M ^ ( 2 + 1 ) ) | 
						
							| 53 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 54 |  | expp1 |  |-  ( ( M e. CC /\ 2 e. NN0 ) -> ( M ^ ( 2 + 1 ) ) = ( ( M ^ 2 ) x. M ) ) | 
						
							| 55 | 15 53 54 | sylancl |  |-  ( ph -> ( M ^ ( 2 + 1 ) ) = ( ( M ^ 2 ) x. M ) ) | 
						
							| 56 | 52 55 | eqtr2id |  |-  ( ph -> ( ( M ^ 2 ) x. M ) = ( M ^ 3 ) ) | 
						
							| 57 |  | mulcl |  |-  ( ( 2 e. CC /\ B e. CC ) -> ( 2 x. B ) e. CC ) | 
						
							| 58 | 11 1 57 | sylancr |  |-  ( ph -> ( 2 x. B ) e. CC ) | 
						
							| 59 | 58 15 15 | mulassd |  |-  ( ph -> ( ( ( 2 x. B ) x. M ) x. M ) = ( ( 2 x. B ) x. ( M x. M ) ) ) | 
						
							| 60 | 17 15 1 | mulassd |  |-  ( ph -> ( ( 2 x. M ) x. B ) = ( 2 x. ( M x. B ) ) ) | 
						
							| 61 | 17 15 1 | mul32d |  |-  ( ph -> ( ( 2 x. M ) x. B ) = ( ( 2 x. B ) x. M ) ) | 
						
							| 62 | 60 61 | eqtr3d |  |-  ( ph -> ( 2 x. ( M x. B ) ) = ( ( 2 x. B ) x. M ) ) | 
						
							| 63 | 62 | oveq1d |  |-  ( ph -> ( ( 2 x. ( M x. B ) ) x. M ) = ( ( ( 2 x. B ) x. M ) x. M ) ) | 
						
							| 64 | 15 | sqvald |  |-  ( ph -> ( M ^ 2 ) = ( M x. M ) ) | 
						
							| 65 | 64 | oveq2d |  |-  ( ph -> ( ( 2 x. B ) x. ( M ^ 2 ) ) = ( ( 2 x. B ) x. ( M x. M ) ) ) | 
						
							| 66 | 59 63 65 | 3eqtr4d |  |-  ( ph -> ( ( 2 x. ( M x. B ) ) x. M ) = ( ( 2 x. B ) x. ( M ^ 2 ) ) ) | 
						
							| 67 | 56 66 | oveq12d |  |-  ( ph -> ( ( ( M ^ 2 ) x. M ) + ( ( 2 x. ( M x. B ) ) x. M ) ) = ( ( M ^ 3 ) + ( ( 2 x. B ) x. ( M ^ 2 ) ) ) ) | 
						
							| 68 | 50 67 | eqtrd |  |-  ( ph -> ( ( ( M ^ 2 ) + ( 2 x. ( M x. B ) ) ) x. M ) = ( ( M ^ 3 ) + ( ( 2 x. B ) x. ( M ^ 2 ) ) ) ) | 
						
							| 69 | 68 | oveq1d |  |-  ( ph -> ( ( ( ( M ^ 2 ) + ( 2 x. ( M x. B ) ) ) x. M ) + ( ( B ^ 2 ) x. M ) ) = ( ( ( M ^ 3 ) + ( ( 2 x. B ) x. ( M ^ 2 ) ) ) + ( ( B ^ 2 ) x. M ) ) ) | 
						
							| 70 | 42 49 69 | 3eqtrd |  |-  ( ph -> ( ( ( M + B ) ^ 2 ) x. M ) = ( ( ( M ^ 3 ) + ( ( 2 x. B ) x. ( M ^ 2 ) ) ) + ( ( B ^ 2 ) x. M ) ) ) | 
						
							| 71 | 70 | oveq1d |  |-  ( ph -> ( ( ( ( M + B ) ^ 2 ) x. M ) - ( ( 4 x. D ) x. M ) ) = ( ( ( ( M ^ 3 ) + ( ( 2 x. B ) x. ( M ^ 2 ) ) ) + ( ( B ^ 2 ) x. M ) ) - ( ( 4 x. D ) x. M ) ) ) | 
						
							| 72 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 73 |  | expcl |  |-  ( ( M e. CC /\ 3 e. NN0 ) -> ( M ^ 3 ) e. CC ) | 
						
							| 74 | 15 72 73 | sylancl |  |-  ( ph -> ( M ^ 3 ) e. CC ) | 
						
							| 75 | 58 43 | mulcld |  |-  ( ph -> ( ( 2 x. B ) x. ( M ^ 2 ) ) e. CC ) | 
						
							| 76 | 74 75 | addcld |  |-  ( ph -> ( ( M ^ 3 ) + ( ( 2 x. B ) x. ( M ^ 2 ) ) ) e. CC ) | 
						
							| 77 | 48 15 | mulcld |  |-  ( ph -> ( ( B ^ 2 ) x. M ) e. CC ) | 
						
							| 78 |  | mulcl |  |-  ( ( 4 e. CC /\ D e. CC ) -> ( 4 x. D ) e. CC ) | 
						
							| 79 | 26 9 78 | sylancr |  |-  ( ph -> ( 4 x. D ) e. CC ) | 
						
							| 80 | 79 15 | mulcld |  |-  ( ph -> ( ( 4 x. D ) x. M ) e. CC ) | 
						
							| 81 | 76 77 80 | addsubassd |  |-  ( ph -> ( ( ( ( M ^ 3 ) + ( ( 2 x. B ) x. ( M ^ 2 ) ) ) + ( ( B ^ 2 ) x. M ) ) - ( ( 4 x. D ) x. M ) ) = ( ( ( M ^ 3 ) + ( ( 2 x. B ) x. ( M ^ 2 ) ) ) + ( ( ( B ^ 2 ) x. M ) - ( ( 4 x. D ) x. M ) ) ) ) | 
						
							| 82 | 48 79 15 | subdird |  |-  ( ph -> ( ( ( B ^ 2 ) - ( 4 x. D ) ) x. M ) = ( ( ( B ^ 2 ) x. M ) - ( ( 4 x. D ) x. M ) ) ) | 
						
							| 83 | 82 | oveq2d |  |-  ( ph -> ( ( ( M ^ 3 ) + ( ( 2 x. B ) x. ( M ^ 2 ) ) ) + ( ( ( B ^ 2 ) - ( 4 x. D ) ) x. M ) ) = ( ( ( M ^ 3 ) + ( ( 2 x. B ) x. ( M ^ 2 ) ) ) + ( ( ( B ^ 2 ) x. M ) - ( ( 4 x. D ) x. M ) ) ) ) | 
						
							| 84 | 81 83 | eqtr4d |  |-  ( ph -> ( ( ( ( M ^ 3 ) + ( ( 2 x. B ) x. ( M ^ 2 ) ) ) + ( ( B ^ 2 ) x. M ) ) - ( ( 4 x. D ) x. M ) ) = ( ( ( M ^ 3 ) + ( ( 2 x. B ) x. ( M ^ 2 ) ) ) + ( ( ( B ^ 2 ) - ( 4 x. D ) ) x. M ) ) ) | 
						
							| 85 | 48 79 | subcld |  |-  ( ph -> ( ( B ^ 2 ) - ( 4 x. D ) ) e. CC ) | 
						
							| 86 | 85 15 | mulcld |  |-  ( ph -> ( ( ( B ^ 2 ) - ( 4 x. D ) ) x. M ) e. CC ) | 
						
							| 87 | 76 86 | addcld |  |-  ( ph -> ( ( ( M ^ 3 ) + ( ( 2 x. B ) x. ( M ^ 2 ) ) ) + ( ( ( B ^ 2 ) - ( 4 x. D ) ) x. M ) ) e. CC ) | 
						
							| 88 | 31 | negcld |  |-  ( ph -> -u ( C ^ 2 ) e. CC ) | 
						
							| 89 | 76 86 88 | addassd |  |-  ( ph -> ( ( ( ( M ^ 3 ) + ( ( 2 x. B ) x. ( M ^ 2 ) ) ) + ( ( ( B ^ 2 ) - ( 4 x. D ) ) x. M ) ) + -u ( C ^ 2 ) ) = ( ( ( M ^ 3 ) + ( ( 2 x. B ) x. ( M ^ 2 ) ) ) + ( ( ( ( B ^ 2 ) - ( 4 x. D ) ) x. M ) + -u ( C ^ 2 ) ) ) ) | 
						
							| 90 | 87 31 | negsubd |  |-  ( ph -> ( ( ( ( M ^ 3 ) + ( ( 2 x. B ) x. ( M ^ 2 ) ) ) + ( ( ( B ^ 2 ) - ( 4 x. D ) ) x. M ) ) + -u ( C ^ 2 ) ) = ( ( ( ( M ^ 3 ) + ( ( 2 x. B ) x. ( M ^ 2 ) ) ) + ( ( ( B ^ 2 ) - ( 4 x. D ) ) x. M ) ) - ( C ^ 2 ) ) ) | 
						
							| 91 | 89 90 10 | 3eqtr3d |  |-  ( ph -> ( ( ( ( M ^ 3 ) + ( ( 2 x. B ) x. ( M ^ 2 ) ) ) + ( ( ( B ^ 2 ) - ( 4 x. D ) ) x. M ) ) - ( C ^ 2 ) ) = 0 ) | 
						
							| 92 | 87 31 91 | subeq0d |  |-  ( ph -> ( ( ( M ^ 3 ) + ( ( 2 x. B ) x. ( M ^ 2 ) ) ) + ( ( ( B ^ 2 ) - ( 4 x. D ) ) x. M ) ) = ( C ^ 2 ) ) | 
						
							| 93 | 71 84 92 | 3eqtrd |  |-  ( ph -> ( ( ( ( M + B ) ^ 2 ) x. M ) - ( ( 4 x. D ) x. M ) ) = ( C ^ 2 ) ) | 
						
							| 94 | 25 15 | mulcld |  |-  ( ph -> ( ( ( M + B ) ^ 2 ) x. M ) e. CC ) | 
						
							| 95 |  | subsub23 |  |-  ( ( ( ( ( M + B ) ^ 2 ) x. M ) e. CC /\ ( ( 4 x. D ) x. M ) e. CC /\ ( C ^ 2 ) e. CC ) -> ( ( ( ( ( M + B ) ^ 2 ) x. M ) - ( ( 4 x. D ) x. M ) ) = ( C ^ 2 ) <-> ( ( ( ( M + B ) ^ 2 ) x. M ) - ( C ^ 2 ) ) = ( ( 4 x. D ) x. M ) ) ) | 
						
							| 96 | 94 80 31 95 | syl3anc |  |-  ( ph -> ( ( ( ( ( M + B ) ^ 2 ) x. M ) - ( ( 4 x. D ) x. M ) ) = ( C ^ 2 ) <-> ( ( ( ( M + B ) ^ 2 ) x. M ) - ( C ^ 2 ) ) = ( ( 4 x. D ) x. M ) ) ) | 
						
							| 97 | 93 96 | mpbid |  |-  ( ph -> ( ( ( ( M + B ) ^ 2 ) x. M ) - ( C ^ 2 ) ) = ( ( 4 x. D ) x. M ) ) | 
						
							| 98 | 27 9 15 | mulassd |  |-  ( ph -> ( ( 4 x. D ) x. M ) = ( 4 x. ( D x. M ) ) ) | 
						
							| 99 | 97 98 | eqtrd |  |-  ( ph -> ( ( ( ( M + B ) ^ 2 ) x. M ) - ( C ^ 2 ) ) = ( 4 x. ( D x. M ) ) ) | 
						
							| 100 | 99 | oveq1d |  |-  ( ph -> ( ( ( ( ( M + B ) ^ 2 ) x. M ) - ( C ^ 2 ) ) / 4 ) = ( ( 4 x. ( D x. M ) ) / 4 ) ) | 
						
							| 101 | 94 31 27 29 | divsubdird |  |-  ( ph -> ( ( ( ( ( M + B ) ^ 2 ) x. M ) - ( C ^ 2 ) ) / 4 ) = ( ( ( ( ( M + B ) ^ 2 ) x. M ) / 4 ) - ( ( C ^ 2 ) / 4 ) ) ) | 
						
							| 102 | 9 15 | mulcld |  |-  ( ph -> ( D x. M ) e. CC ) | 
						
							| 103 | 102 27 29 | divcan3d |  |-  ( ph -> ( ( 4 x. ( D x. M ) ) / 4 ) = ( D x. M ) ) | 
						
							| 104 | 100 101 103 | 3eqtr3d |  |-  ( ph -> ( ( ( ( ( M + B ) ^ 2 ) x. M ) / 4 ) - ( ( C ^ 2 ) / 4 ) ) = ( D x. M ) ) | 
						
							| 105 | 35 39 104 | 3eqtrd |  |-  ( ph -> ( ( ( ( ( M + B ) ^ 2 ) / 4 ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) x. M ) = ( D x. M ) ) | 
						
							| 106 | 34 9 15 6 105 | mulcan2ad |  |-  ( ph -> ( ( ( ( M + B ) ^ 2 ) / 4 ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) = D ) | 
						
							| 107 | 24 106 | eqtrd |  |-  ( ph -> ( ( ( ( M + B ) / 2 ) ^ 2 ) - ( ( ( C ^ 2 ) / 4 ) / M ) ) = D ) |