Step |
Hyp |
Ref |
Expression |
1 |
|
cubic.r |
|- R = { 1 , ( ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) / 2 ) , ( ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) / 2 ) } |
2 |
|
cubic.a |
|- ( ph -> A e. CC ) |
3 |
|
cubic.z |
|- ( ph -> A =/= 0 ) |
4 |
|
cubic.b |
|- ( ph -> B e. CC ) |
5 |
|
cubic.c |
|- ( ph -> C e. CC ) |
6 |
|
cubic.d |
|- ( ph -> D e. CC ) |
7 |
|
cubic.x |
|- ( ph -> X e. CC ) |
8 |
|
cubic.t |
|- ( ph -> T = ( ( ( N + ( sqrt ` G ) ) / 2 ) ^c ( 1 / 3 ) ) ) |
9 |
|
cubic.g |
|- ( ph -> G = ( ( N ^ 2 ) - ( 4 x. ( M ^ 3 ) ) ) ) |
10 |
|
cubic.m |
|- ( ph -> M = ( ( B ^ 2 ) - ( 3 x. ( A x. C ) ) ) ) |
11 |
|
cubic.n |
|- ( ph -> N = ( ( ( 2 x. ( B ^ 3 ) ) - ( ( 9 x. A ) x. ( B x. C ) ) ) + ( ; 2 7 x. ( ( A ^ 2 ) x. D ) ) ) ) |
12 |
|
cubic.0 |
|- ( ph -> M =/= 0 ) |
13 |
|
2cn |
|- 2 e. CC |
14 |
|
3nn0 |
|- 3 e. NN0 |
15 |
|
expcl |
|- ( ( B e. CC /\ 3 e. NN0 ) -> ( B ^ 3 ) e. CC ) |
16 |
4 14 15
|
sylancl |
|- ( ph -> ( B ^ 3 ) e. CC ) |
17 |
|
mulcl |
|- ( ( 2 e. CC /\ ( B ^ 3 ) e. CC ) -> ( 2 x. ( B ^ 3 ) ) e. CC ) |
18 |
13 16 17
|
sylancr |
|- ( ph -> ( 2 x. ( B ^ 3 ) ) e. CC ) |
19 |
|
9cn |
|- 9 e. CC |
20 |
|
mulcl |
|- ( ( 9 e. CC /\ A e. CC ) -> ( 9 x. A ) e. CC ) |
21 |
19 2 20
|
sylancr |
|- ( ph -> ( 9 x. A ) e. CC ) |
22 |
4 5
|
mulcld |
|- ( ph -> ( B x. C ) e. CC ) |
23 |
21 22
|
mulcld |
|- ( ph -> ( ( 9 x. A ) x. ( B x. C ) ) e. CC ) |
24 |
18 23
|
subcld |
|- ( ph -> ( ( 2 x. ( B ^ 3 ) ) - ( ( 9 x. A ) x. ( B x. C ) ) ) e. CC ) |
25 |
|
2nn0 |
|- 2 e. NN0 |
26 |
|
7nn |
|- 7 e. NN |
27 |
25 26
|
decnncl |
|- ; 2 7 e. NN |
28 |
27
|
nncni |
|- ; 2 7 e. CC |
29 |
2
|
sqcld |
|- ( ph -> ( A ^ 2 ) e. CC ) |
30 |
29 6
|
mulcld |
|- ( ph -> ( ( A ^ 2 ) x. D ) e. CC ) |
31 |
|
mulcl |
|- ( ( ; 2 7 e. CC /\ ( ( A ^ 2 ) x. D ) e. CC ) -> ( ; 2 7 x. ( ( A ^ 2 ) x. D ) ) e. CC ) |
32 |
28 30 31
|
sylancr |
|- ( ph -> ( ; 2 7 x. ( ( A ^ 2 ) x. D ) ) e. CC ) |
33 |
24 32
|
addcld |
|- ( ph -> ( ( ( 2 x. ( B ^ 3 ) ) - ( ( 9 x. A ) x. ( B x. C ) ) ) + ( ; 2 7 x. ( ( A ^ 2 ) x. D ) ) ) e. CC ) |
34 |
11 33
|
eqeltrd |
|- ( ph -> N e. CC ) |
35 |
34
|
sqcld |
|- ( ph -> ( N ^ 2 ) e. CC ) |
36 |
|
4cn |
|- 4 e. CC |
37 |
4
|
sqcld |
|- ( ph -> ( B ^ 2 ) e. CC ) |
38 |
|
3cn |
|- 3 e. CC |
39 |
2 5
|
mulcld |
|- ( ph -> ( A x. C ) e. CC ) |
40 |
|
mulcl |
|- ( ( 3 e. CC /\ ( A x. C ) e. CC ) -> ( 3 x. ( A x. C ) ) e. CC ) |
41 |
38 39 40
|
sylancr |
|- ( ph -> ( 3 x. ( A x. C ) ) e. CC ) |
42 |
37 41
|
subcld |
|- ( ph -> ( ( B ^ 2 ) - ( 3 x. ( A x. C ) ) ) e. CC ) |
43 |
10 42
|
eqeltrd |
|- ( ph -> M e. CC ) |
44 |
|
expcl |
|- ( ( M e. CC /\ 3 e. NN0 ) -> ( M ^ 3 ) e. CC ) |
45 |
43 14 44
|
sylancl |
|- ( ph -> ( M ^ 3 ) e. CC ) |
46 |
|
mulcl |
|- ( ( 4 e. CC /\ ( M ^ 3 ) e. CC ) -> ( 4 x. ( M ^ 3 ) ) e. CC ) |
47 |
36 45 46
|
sylancr |
|- ( ph -> ( 4 x. ( M ^ 3 ) ) e. CC ) |
48 |
35 47
|
subcld |
|- ( ph -> ( ( N ^ 2 ) - ( 4 x. ( M ^ 3 ) ) ) e. CC ) |
49 |
9 48
|
eqeltrd |
|- ( ph -> G e. CC ) |
50 |
49
|
sqrtcld |
|- ( ph -> ( sqrt ` G ) e. CC ) |
51 |
34 50
|
addcld |
|- ( ph -> ( N + ( sqrt ` G ) ) e. CC ) |
52 |
51
|
halfcld |
|- ( ph -> ( ( N + ( sqrt ` G ) ) / 2 ) e. CC ) |
53 |
|
3ne0 |
|- 3 =/= 0 |
54 |
38 53
|
reccli |
|- ( 1 / 3 ) e. CC |
55 |
|
cxpcl |
|- ( ( ( ( N + ( sqrt ` G ) ) / 2 ) e. CC /\ ( 1 / 3 ) e. CC ) -> ( ( ( N + ( sqrt ` G ) ) / 2 ) ^c ( 1 / 3 ) ) e. CC ) |
56 |
52 54 55
|
sylancl |
|- ( ph -> ( ( ( N + ( sqrt ` G ) ) / 2 ) ^c ( 1 / 3 ) ) e. CC ) |
57 |
8 56
|
eqeltrd |
|- ( ph -> T e. CC ) |
58 |
8
|
oveq1d |
|- ( ph -> ( T ^ 3 ) = ( ( ( ( N + ( sqrt ` G ) ) / 2 ) ^c ( 1 / 3 ) ) ^ 3 ) ) |
59 |
|
3nn |
|- 3 e. NN |
60 |
|
cxproot |
|- ( ( ( ( N + ( sqrt ` G ) ) / 2 ) e. CC /\ 3 e. NN ) -> ( ( ( ( N + ( sqrt ` G ) ) / 2 ) ^c ( 1 / 3 ) ) ^ 3 ) = ( ( N + ( sqrt ` G ) ) / 2 ) ) |
61 |
52 59 60
|
sylancl |
|- ( ph -> ( ( ( ( N + ( sqrt ` G ) ) / 2 ) ^c ( 1 / 3 ) ) ^ 3 ) = ( ( N + ( sqrt ` G ) ) / 2 ) ) |
62 |
58 61
|
eqtrd |
|- ( ph -> ( T ^ 3 ) = ( ( N + ( sqrt ` G ) ) / 2 ) ) |
63 |
49
|
sqsqrtd |
|- ( ph -> ( ( sqrt ` G ) ^ 2 ) = G ) |
64 |
63 9
|
eqtrd |
|- ( ph -> ( ( sqrt ` G ) ^ 2 ) = ( ( N ^ 2 ) - ( 4 x. ( M ^ 3 ) ) ) ) |
65 |
13
|
a1i |
|- ( ph -> 2 e. CC ) |
66 |
36
|
a1i |
|- ( ph -> 4 e. CC ) |
67 |
|
4ne0 |
|- 4 =/= 0 |
68 |
67
|
a1i |
|- ( ph -> 4 =/= 0 ) |
69 |
|
3z |
|- 3 e. ZZ |
70 |
69
|
a1i |
|- ( ph -> 3 e. ZZ ) |
71 |
43 12 70
|
expne0d |
|- ( ph -> ( M ^ 3 ) =/= 0 ) |
72 |
66 45 68 71
|
mulne0d |
|- ( ph -> ( 4 x. ( M ^ 3 ) ) =/= 0 ) |
73 |
64
|
oveq2d |
|- ( ph -> ( ( N ^ 2 ) - ( ( sqrt ` G ) ^ 2 ) ) = ( ( N ^ 2 ) - ( ( N ^ 2 ) - ( 4 x. ( M ^ 3 ) ) ) ) ) |
74 |
|
subsq |
|- ( ( N e. CC /\ ( sqrt ` G ) e. CC ) -> ( ( N ^ 2 ) - ( ( sqrt ` G ) ^ 2 ) ) = ( ( N + ( sqrt ` G ) ) x. ( N - ( sqrt ` G ) ) ) ) |
75 |
34 50 74
|
syl2anc |
|- ( ph -> ( ( N ^ 2 ) - ( ( sqrt ` G ) ^ 2 ) ) = ( ( N + ( sqrt ` G ) ) x. ( N - ( sqrt ` G ) ) ) ) |
76 |
35 47
|
nncand |
|- ( ph -> ( ( N ^ 2 ) - ( ( N ^ 2 ) - ( 4 x. ( M ^ 3 ) ) ) ) = ( 4 x. ( M ^ 3 ) ) ) |
77 |
73 75 76
|
3eqtr3d |
|- ( ph -> ( ( N + ( sqrt ` G ) ) x. ( N - ( sqrt ` G ) ) ) = ( 4 x. ( M ^ 3 ) ) ) |
78 |
34 50
|
subcld |
|- ( ph -> ( N - ( sqrt ` G ) ) e. CC ) |
79 |
78
|
mul02d |
|- ( ph -> ( 0 x. ( N - ( sqrt ` G ) ) ) = 0 ) |
80 |
72 77 79
|
3netr4d |
|- ( ph -> ( ( N + ( sqrt ` G ) ) x. ( N - ( sqrt ` G ) ) ) =/= ( 0 x. ( N - ( sqrt ` G ) ) ) ) |
81 |
|
oveq1 |
|- ( ( N + ( sqrt ` G ) ) = 0 -> ( ( N + ( sqrt ` G ) ) x. ( N - ( sqrt ` G ) ) ) = ( 0 x. ( N - ( sqrt ` G ) ) ) ) |
82 |
81
|
necon3i |
|- ( ( ( N + ( sqrt ` G ) ) x. ( N - ( sqrt ` G ) ) ) =/= ( 0 x. ( N - ( sqrt ` G ) ) ) -> ( N + ( sqrt ` G ) ) =/= 0 ) |
83 |
80 82
|
syl |
|- ( ph -> ( N + ( sqrt ` G ) ) =/= 0 ) |
84 |
|
2ne0 |
|- 2 =/= 0 |
85 |
84
|
a1i |
|- ( ph -> 2 =/= 0 ) |
86 |
51 65 83 85
|
divne0d |
|- ( ph -> ( ( N + ( sqrt ` G ) ) / 2 ) =/= 0 ) |
87 |
54
|
a1i |
|- ( ph -> ( 1 / 3 ) e. CC ) |
88 |
52 86 87
|
cxpne0d |
|- ( ph -> ( ( ( N + ( sqrt ` G ) ) / 2 ) ^c ( 1 / 3 ) ) =/= 0 ) |
89 |
8 88
|
eqnetrd |
|- ( ph -> T =/= 0 ) |
90 |
2 3 4 5 6 7 57 62 50 64 10 11 89
|
cubic2 |
|- ( ph -> ( ( ( ( A x. ( X ^ 3 ) ) + ( B x. ( X ^ 2 ) ) ) + ( ( C x. X ) + D ) ) = 0 <-> E. r e. CC ( ( r ^ 3 ) = 1 /\ X = -u ( ( ( B + ( r x. T ) ) + ( M / ( r x. T ) ) ) / ( 3 x. A ) ) ) ) ) |
91 |
1
|
1cubr |
|- ( r e. R <-> ( r e. CC /\ ( r ^ 3 ) = 1 ) ) |
92 |
91
|
anbi1i |
|- ( ( r e. R /\ X = -u ( ( ( B + ( r x. T ) ) + ( M / ( r x. T ) ) ) / ( 3 x. A ) ) ) <-> ( ( r e. CC /\ ( r ^ 3 ) = 1 ) /\ X = -u ( ( ( B + ( r x. T ) ) + ( M / ( r x. T ) ) ) / ( 3 x. A ) ) ) ) |
93 |
|
anass |
|- ( ( ( r e. CC /\ ( r ^ 3 ) = 1 ) /\ X = -u ( ( ( B + ( r x. T ) ) + ( M / ( r x. T ) ) ) / ( 3 x. A ) ) ) <-> ( r e. CC /\ ( ( r ^ 3 ) = 1 /\ X = -u ( ( ( B + ( r x. T ) ) + ( M / ( r x. T ) ) ) / ( 3 x. A ) ) ) ) ) |
94 |
92 93
|
bitri |
|- ( ( r e. R /\ X = -u ( ( ( B + ( r x. T ) ) + ( M / ( r x. T ) ) ) / ( 3 x. A ) ) ) <-> ( r e. CC /\ ( ( r ^ 3 ) = 1 /\ X = -u ( ( ( B + ( r x. T ) ) + ( M / ( r x. T ) ) ) / ( 3 x. A ) ) ) ) ) |
95 |
94
|
rexbii2 |
|- ( E. r e. R X = -u ( ( ( B + ( r x. T ) ) + ( M / ( r x. T ) ) ) / ( 3 x. A ) ) <-> E. r e. CC ( ( r ^ 3 ) = 1 /\ X = -u ( ( ( B + ( r x. T ) ) + ( M / ( r x. T ) ) ) / ( 3 x. A ) ) ) ) |
96 |
90 95
|
bitr4di |
|- ( ph -> ( ( ( ( A x. ( X ^ 3 ) ) + ( B x. ( X ^ 2 ) ) ) + ( ( C x. X ) + D ) ) = 0 <-> E. r e. R X = -u ( ( ( B + ( r x. T ) ) + ( M / ( r x. T ) ) ) / ( 3 x. A ) ) ) ) |