| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-4 |
|- 4 = ( 3 + 1 ) |
| 2 |
1
|
oveq2i |
|- ( ( A + B ) ^ 4 ) = ( ( A + B ) ^ ( 3 + 1 ) ) |
| 3 |
|
addcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
| 4 |
|
3nn0 |
|- 3 e. NN0 |
| 5 |
|
expp1 |
|- ( ( ( A + B ) e. CC /\ 3 e. NN0 ) -> ( ( A + B ) ^ ( 3 + 1 ) ) = ( ( ( A + B ) ^ 3 ) x. ( A + B ) ) ) |
| 6 |
3 4 5
|
sylancl |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ ( 3 + 1 ) ) = ( ( ( A + B ) ^ 3 ) x. ( A + B ) ) ) |
| 7 |
2 6
|
eqtrid |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ 4 ) = ( ( ( A + B ) ^ 3 ) x. ( A + B ) ) ) |
| 8 |
|
binom3 |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ 3 ) = ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) ) |
| 9 |
8
|
oveq1d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A + B ) ^ 3 ) x. ( A + B ) ) = ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) x. ( A + B ) ) ) |
| 10 |
|
simpl |
|- ( ( A e. CC /\ B e. CC ) -> A e. CC ) |
| 11 |
|
expcl |
|- ( ( A e. CC /\ 3 e. NN0 ) -> ( A ^ 3 ) e. CC ) |
| 12 |
10 4 11
|
sylancl |
|- ( ( A e. CC /\ B e. CC ) -> ( A ^ 3 ) e. CC ) |
| 13 |
|
3cn |
|- 3 e. CC |
| 14 |
10
|
sqcld |
|- ( ( A e. CC /\ B e. CC ) -> ( A ^ 2 ) e. CC ) |
| 15 |
|
simpr |
|- ( ( A e. CC /\ B e. CC ) -> B e. CC ) |
| 16 |
14 15
|
mulcld |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) x. B ) e. CC ) |
| 17 |
|
mulcl |
|- ( ( 3 e. CC /\ ( ( A ^ 2 ) x. B ) e. CC ) -> ( 3 x. ( ( A ^ 2 ) x. B ) ) e. CC ) |
| 18 |
13 16 17
|
sylancr |
|- ( ( A e. CC /\ B e. CC ) -> ( 3 x. ( ( A ^ 2 ) x. B ) ) e. CC ) |
| 19 |
12 18
|
addcld |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) e. CC ) |
| 20 |
15
|
sqcld |
|- ( ( A e. CC /\ B e. CC ) -> ( B ^ 2 ) e. CC ) |
| 21 |
10 20
|
mulcld |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. ( B ^ 2 ) ) e. CC ) |
| 22 |
|
mulcl |
|- ( ( 3 e. CC /\ ( A x. ( B ^ 2 ) ) e. CC ) -> ( 3 x. ( A x. ( B ^ 2 ) ) ) e. CC ) |
| 23 |
13 21 22
|
sylancr |
|- ( ( A e. CC /\ B e. CC ) -> ( 3 x. ( A x. ( B ^ 2 ) ) ) e. CC ) |
| 24 |
|
expcl |
|- ( ( B e. CC /\ 3 e. NN0 ) -> ( B ^ 3 ) e. CC ) |
| 25 |
15 4 24
|
sylancl |
|- ( ( A e. CC /\ B e. CC ) -> ( B ^ 3 ) e. CC ) |
| 26 |
23 25
|
addcld |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) e. CC ) |
| 27 |
19 26
|
addcld |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) e. CC ) |
| 28 |
27 10 15
|
adddid |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) x. ( A + B ) ) = ( ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) x. A ) + ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) x. B ) ) ) |
| 29 |
1
|
oveq2i |
|- ( A ^ 4 ) = ( A ^ ( 3 + 1 ) ) |
| 30 |
|
expp1 |
|- ( ( A e. CC /\ 3 e. NN0 ) -> ( A ^ ( 3 + 1 ) ) = ( ( A ^ 3 ) x. A ) ) |
| 31 |
10 4 30
|
sylancl |
|- ( ( A e. CC /\ B e. CC ) -> ( A ^ ( 3 + 1 ) ) = ( ( A ^ 3 ) x. A ) ) |
| 32 |
29 31
|
eqtr2id |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 3 ) x. A ) = ( A ^ 4 ) ) |
| 33 |
13
|
a1i |
|- ( ( A e. CC /\ B e. CC ) -> 3 e. CC ) |
| 34 |
33 16 10
|
mulassd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 3 x. ( ( A ^ 2 ) x. B ) ) x. A ) = ( 3 x. ( ( ( A ^ 2 ) x. B ) x. A ) ) ) |
| 35 |
14 15 10
|
mul32d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A ^ 2 ) x. B ) x. A ) = ( ( ( A ^ 2 ) x. A ) x. B ) ) |
| 36 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
| 37 |
36
|
oveq2i |
|- ( A ^ 3 ) = ( A ^ ( 2 + 1 ) ) |
| 38 |
|
2nn0 |
|- 2 e. NN0 |
| 39 |
|
expp1 |
|- ( ( A e. CC /\ 2 e. NN0 ) -> ( A ^ ( 2 + 1 ) ) = ( ( A ^ 2 ) x. A ) ) |
| 40 |
10 38 39
|
sylancl |
|- ( ( A e. CC /\ B e. CC ) -> ( A ^ ( 2 + 1 ) ) = ( ( A ^ 2 ) x. A ) ) |
| 41 |
37 40
|
eqtr2id |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) x. A ) = ( A ^ 3 ) ) |
| 42 |
41
|
oveq1d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A ^ 2 ) x. A ) x. B ) = ( ( A ^ 3 ) x. B ) ) |
| 43 |
35 42
|
eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A ^ 2 ) x. B ) x. A ) = ( ( A ^ 3 ) x. B ) ) |
| 44 |
43
|
oveq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( 3 x. ( ( ( A ^ 2 ) x. B ) x. A ) ) = ( 3 x. ( ( A ^ 3 ) x. B ) ) ) |
| 45 |
34 44
|
eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 3 x. ( ( A ^ 2 ) x. B ) ) x. A ) = ( 3 x. ( ( A ^ 3 ) x. B ) ) ) |
| 46 |
32 45
|
oveq12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A ^ 3 ) x. A ) + ( ( 3 x. ( ( A ^ 2 ) x. B ) ) x. A ) ) = ( ( A ^ 4 ) + ( 3 x. ( ( A ^ 3 ) x. B ) ) ) ) |
| 47 |
12 10 18 46
|
joinlmuladdmuld |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) x. A ) = ( ( A ^ 4 ) + ( 3 x. ( ( A ^ 3 ) x. B ) ) ) ) |
| 48 |
33 21 10
|
mulassd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 3 x. ( A x. ( B ^ 2 ) ) ) x. A ) = ( 3 x. ( ( A x. ( B ^ 2 ) ) x. A ) ) ) |
| 49 |
10 20 10
|
mul32d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A x. ( B ^ 2 ) ) x. A ) = ( ( A x. A ) x. ( B ^ 2 ) ) ) |
| 50 |
10
|
sqvald |
|- ( ( A e. CC /\ B e. CC ) -> ( A ^ 2 ) = ( A x. A ) ) |
| 51 |
50
|
oveq1d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) x. ( B ^ 2 ) ) = ( ( A x. A ) x. ( B ^ 2 ) ) ) |
| 52 |
49 51
|
eqtr4d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A x. ( B ^ 2 ) ) x. A ) = ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) |
| 53 |
52
|
oveq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( 3 x. ( ( A x. ( B ^ 2 ) ) x. A ) ) = ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) ) |
| 54 |
48 53
|
eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 3 x. ( A x. ( B ^ 2 ) ) ) x. A ) = ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) ) |
| 55 |
25 10
|
mulcomd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( B ^ 3 ) x. A ) = ( A x. ( B ^ 3 ) ) ) |
| 56 |
54 55
|
oveq12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( 3 x. ( A x. ( B ^ 2 ) ) ) x. A ) + ( ( B ^ 3 ) x. A ) ) = ( ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) + ( A x. ( B ^ 3 ) ) ) ) |
| 57 |
23 10 25 56
|
joinlmuladdmuld |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) x. A ) = ( ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) + ( A x. ( B ^ 3 ) ) ) ) |
| 58 |
47 57
|
oveq12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) x. A ) + ( ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) x. A ) ) = ( ( ( A ^ 4 ) + ( 3 x. ( ( A ^ 3 ) x. B ) ) ) + ( ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) + ( A x. ( B ^ 3 ) ) ) ) ) |
| 59 |
19 10 26 58
|
joinlmuladdmuld |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) x. A ) = ( ( ( A ^ 4 ) + ( 3 x. ( ( A ^ 3 ) x. B ) ) ) + ( ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) + ( A x. ( B ^ 3 ) ) ) ) ) |
| 60 |
19 26 15
|
adddird |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) x. B ) = ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) x. B ) + ( ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) x. B ) ) ) |
| 61 |
33 16 15
|
mulassd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 3 x. ( ( A ^ 2 ) x. B ) ) x. B ) = ( 3 x. ( ( ( A ^ 2 ) x. B ) x. B ) ) ) |
| 62 |
14 15 15
|
mulassd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A ^ 2 ) x. B ) x. B ) = ( ( A ^ 2 ) x. ( B x. B ) ) ) |
| 63 |
15
|
sqvald |
|- ( ( A e. CC /\ B e. CC ) -> ( B ^ 2 ) = ( B x. B ) ) |
| 64 |
63
|
oveq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) x. ( B ^ 2 ) ) = ( ( A ^ 2 ) x. ( B x. B ) ) ) |
| 65 |
62 64
|
eqtr4d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A ^ 2 ) x. B ) x. B ) = ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) |
| 66 |
65
|
oveq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( 3 x. ( ( ( A ^ 2 ) x. B ) x. B ) ) = ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) ) |
| 67 |
61 66
|
eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 3 x. ( ( A ^ 2 ) x. B ) ) x. B ) = ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) ) |
| 68 |
67
|
oveq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A ^ 3 ) x. B ) + ( ( 3 x. ( ( A ^ 2 ) x. B ) ) x. B ) ) = ( ( ( A ^ 3 ) x. B ) + ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) ) ) |
| 69 |
12 15 18 68
|
joinlmuladdmuld |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) x. B ) = ( ( ( A ^ 3 ) x. B ) + ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) ) ) |
| 70 |
33 21 15
|
mulassd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 3 x. ( A x. ( B ^ 2 ) ) ) x. B ) = ( 3 x. ( ( A x. ( B ^ 2 ) ) x. B ) ) ) |
| 71 |
10 20 15
|
mulassd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A x. ( B ^ 2 ) ) x. B ) = ( A x. ( ( B ^ 2 ) x. B ) ) ) |
| 72 |
36
|
oveq2i |
|- ( B ^ 3 ) = ( B ^ ( 2 + 1 ) ) |
| 73 |
|
expp1 |
|- ( ( B e. CC /\ 2 e. NN0 ) -> ( B ^ ( 2 + 1 ) ) = ( ( B ^ 2 ) x. B ) ) |
| 74 |
15 38 73
|
sylancl |
|- ( ( A e. CC /\ B e. CC ) -> ( B ^ ( 2 + 1 ) ) = ( ( B ^ 2 ) x. B ) ) |
| 75 |
72 74
|
eqtr2id |
|- ( ( A e. CC /\ B e. CC ) -> ( ( B ^ 2 ) x. B ) = ( B ^ 3 ) ) |
| 76 |
75
|
oveq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. ( ( B ^ 2 ) x. B ) ) = ( A x. ( B ^ 3 ) ) ) |
| 77 |
71 76
|
eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A x. ( B ^ 2 ) ) x. B ) = ( A x. ( B ^ 3 ) ) ) |
| 78 |
77
|
oveq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( 3 x. ( ( A x. ( B ^ 2 ) ) x. B ) ) = ( 3 x. ( A x. ( B ^ 3 ) ) ) ) |
| 79 |
70 78
|
eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 3 x. ( A x. ( B ^ 2 ) ) ) x. B ) = ( 3 x. ( A x. ( B ^ 3 ) ) ) ) |
| 80 |
1
|
oveq2i |
|- ( B ^ 4 ) = ( B ^ ( 3 + 1 ) ) |
| 81 |
|
expp1 |
|- ( ( B e. CC /\ 3 e. NN0 ) -> ( B ^ ( 3 + 1 ) ) = ( ( B ^ 3 ) x. B ) ) |
| 82 |
15 4 81
|
sylancl |
|- ( ( A e. CC /\ B e. CC ) -> ( B ^ ( 3 + 1 ) ) = ( ( B ^ 3 ) x. B ) ) |
| 83 |
80 82
|
eqtr2id |
|- ( ( A e. CC /\ B e. CC ) -> ( ( B ^ 3 ) x. B ) = ( B ^ 4 ) ) |
| 84 |
79 83
|
oveq12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( 3 x. ( A x. ( B ^ 2 ) ) ) x. B ) + ( ( B ^ 3 ) x. B ) ) = ( ( 3 x. ( A x. ( B ^ 3 ) ) ) + ( B ^ 4 ) ) ) |
| 85 |
23 15 25 84
|
joinlmuladdmuld |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) x. B ) = ( ( 3 x. ( A x. ( B ^ 3 ) ) ) + ( B ^ 4 ) ) ) |
| 86 |
69 85
|
oveq12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) x. B ) + ( ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) x. B ) ) = ( ( ( ( A ^ 3 ) x. B ) + ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) ) + ( ( 3 x. ( A x. ( B ^ 3 ) ) ) + ( B ^ 4 ) ) ) ) |
| 87 |
12 15
|
mulcld |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 3 ) x. B ) e. CC ) |
| 88 |
14 20
|
mulcld |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) x. ( B ^ 2 ) ) e. CC ) |
| 89 |
|
mulcl |
|- ( ( 3 e. CC /\ ( ( A ^ 2 ) x. ( B ^ 2 ) ) e. CC ) -> ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) e. CC ) |
| 90 |
13 88 89
|
sylancr |
|- ( ( A e. CC /\ B e. CC ) -> ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) e. CC ) |
| 91 |
10 25
|
mulcld |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. ( B ^ 3 ) ) e. CC ) |
| 92 |
|
mulcl |
|- ( ( 3 e. CC /\ ( A x. ( B ^ 3 ) ) e. CC ) -> ( 3 x. ( A x. ( B ^ 3 ) ) ) e. CC ) |
| 93 |
13 91 92
|
sylancr |
|- ( ( A e. CC /\ B e. CC ) -> ( 3 x. ( A x. ( B ^ 3 ) ) ) e. CC ) |
| 94 |
|
4nn0 |
|- 4 e. NN0 |
| 95 |
|
expcl |
|- ( ( B e. CC /\ 4 e. NN0 ) -> ( B ^ 4 ) e. CC ) |
| 96 |
15 94 95
|
sylancl |
|- ( ( A e. CC /\ B e. CC ) -> ( B ^ 4 ) e. CC ) |
| 97 |
93 96
|
addcld |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 3 x. ( A x. ( B ^ 3 ) ) ) + ( B ^ 4 ) ) e. CC ) |
| 98 |
87 90 97
|
addassd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( A ^ 3 ) x. B ) + ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) ) + ( ( 3 x. ( A x. ( B ^ 3 ) ) ) + ( B ^ 4 ) ) ) = ( ( ( A ^ 3 ) x. B ) + ( ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) + ( ( 3 x. ( A x. ( B ^ 3 ) ) ) + ( B ^ 4 ) ) ) ) ) |
| 99 |
60 86 98
|
3eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) x. B ) = ( ( ( A ^ 3 ) x. B ) + ( ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) + ( ( 3 x. ( A x. ( B ^ 3 ) ) ) + ( B ^ 4 ) ) ) ) ) |
| 100 |
59 99
|
oveq12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) x. A ) + ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) x. B ) ) = ( ( ( ( A ^ 4 ) + ( 3 x. ( ( A ^ 3 ) x. B ) ) ) + ( ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) + ( A x. ( B ^ 3 ) ) ) ) + ( ( ( A ^ 3 ) x. B ) + ( ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) + ( ( 3 x. ( A x. ( B ^ 3 ) ) ) + ( B ^ 4 ) ) ) ) ) ) |
| 101 |
|
expcl |
|- ( ( A e. CC /\ 4 e. NN0 ) -> ( A ^ 4 ) e. CC ) |
| 102 |
10 94 101
|
sylancl |
|- ( ( A e. CC /\ B e. CC ) -> ( A ^ 4 ) e. CC ) |
| 103 |
|
mulcl |
|- ( ( 3 e. CC /\ ( ( A ^ 3 ) x. B ) e. CC ) -> ( 3 x. ( ( A ^ 3 ) x. B ) ) e. CC ) |
| 104 |
13 87 103
|
sylancr |
|- ( ( A e. CC /\ B e. CC ) -> ( 3 x. ( ( A ^ 3 ) x. B ) ) e. CC ) |
| 105 |
102 104
|
addcld |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 4 ) + ( 3 x. ( ( A ^ 3 ) x. B ) ) ) e. CC ) |
| 106 |
90 91
|
addcld |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) + ( A x. ( B ^ 3 ) ) ) e. CC ) |
| 107 |
90 97
|
addcld |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) + ( ( 3 x. ( A x. ( B ^ 3 ) ) ) + ( B ^ 4 ) ) ) e. CC ) |
| 108 |
105 106 87 107
|
add4d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( A ^ 4 ) + ( 3 x. ( ( A ^ 3 ) x. B ) ) ) + ( ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) + ( A x. ( B ^ 3 ) ) ) ) + ( ( ( A ^ 3 ) x. B ) + ( ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) + ( ( 3 x. ( A x. ( B ^ 3 ) ) ) + ( B ^ 4 ) ) ) ) ) = ( ( ( ( A ^ 4 ) + ( 3 x. ( ( A ^ 3 ) x. B ) ) ) + ( ( A ^ 3 ) x. B ) ) + ( ( ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) + ( A x. ( B ^ 3 ) ) ) + ( ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) + ( ( 3 x. ( A x. ( B ^ 3 ) ) ) + ( B ^ 4 ) ) ) ) ) ) |
| 109 |
102 104 87
|
addassd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A ^ 4 ) + ( 3 x. ( ( A ^ 3 ) x. B ) ) ) + ( ( A ^ 3 ) x. B ) ) = ( ( A ^ 4 ) + ( ( 3 x. ( ( A ^ 3 ) x. B ) ) + ( ( A ^ 3 ) x. B ) ) ) ) |
| 110 |
1
|
oveq1i |
|- ( 4 x. ( ( A ^ 3 ) x. B ) ) = ( ( 3 + 1 ) x. ( ( A ^ 3 ) x. B ) ) |
| 111 |
|
ax-1cn |
|- 1 e. CC |
| 112 |
111
|
a1i |
|- ( ( A e. CC /\ B e. CC ) -> 1 e. CC ) |
| 113 |
33 112 87
|
adddird |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 3 + 1 ) x. ( ( A ^ 3 ) x. B ) ) = ( ( 3 x. ( ( A ^ 3 ) x. B ) ) + ( 1 x. ( ( A ^ 3 ) x. B ) ) ) ) |
| 114 |
110 113
|
eqtrid |
|- ( ( A e. CC /\ B e. CC ) -> ( 4 x. ( ( A ^ 3 ) x. B ) ) = ( ( 3 x. ( ( A ^ 3 ) x. B ) ) + ( 1 x. ( ( A ^ 3 ) x. B ) ) ) ) |
| 115 |
87
|
mullidd |
|- ( ( A e. CC /\ B e. CC ) -> ( 1 x. ( ( A ^ 3 ) x. B ) ) = ( ( A ^ 3 ) x. B ) ) |
| 116 |
115
|
oveq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 3 x. ( ( A ^ 3 ) x. B ) ) + ( 1 x. ( ( A ^ 3 ) x. B ) ) ) = ( ( 3 x. ( ( A ^ 3 ) x. B ) ) + ( ( A ^ 3 ) x. B ) ) ) |
| 117 |
114 116
|
eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( 4 x. ( ( A ^ 3 ) x. B ) ) = ( ( 3 x. ( ( A ^ 3 ) x. B ) ) + ( ( A ^ 3 ) x. B ) ) ) |
| 118 |
117
|
oveq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 4 ) + ( 4 x. ( ( A ^ 3 ) x. B ) ) ) = ( ( A ^ 4 ) + ( ( 3 x. ( ( A ^ 3 ) x. B ) ) + ( ( A ^ 3 ) x. B ) ) ) ) |
| 119 |
109 118
|
eqtr4d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A ^ 4 ) + ( 3 x. ( ( A ^ 3 ) x. B ) ) ) + ( ( A ^ 3 ) x. B ) ) = ( ( A ^ 4 ) + ( 4 x. ( ( A ^ 3 ) x. B ) ) ) ) |
| 120 |
90 91 90 97
|
add4d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) + ( A x. ( B ^ 3 ) ) ) + ( ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) + ( ( 3 x. ( A x. ( B ^ 3 ) ) ) + ( B ^ 4 ) ) ) ) = ( ( ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) + ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) ) + ( ( A x. ( B ^ 3 ) ) + ( ( 3 x. ( A x. ( B ^ 3 ) ) ) + ( B ^ 4 ) ) ) ) ) |
| 121 |
|
3p3e6 |
|- ( 3 + 3 ) = 6 |
| 122 |
121
|
oveq1i |
|- ( ( 3 + 3 ) x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) = ( 6 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) |
| 123 |
33 33 88
|
adddird |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 3 + 3 ) x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) = ( ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) + ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) ) ) |
| 124 |
122 123
|
eqtr3id |
|- ( ( A e. CC /\ B e. CC ) -> ( 6 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) = ( ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) + ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) ) ) |
| 125 |
|
3p1e4 |
|- ( 3 + 1 ) = 4 |
| 126 |
13 111 125
|
addcomli |
|- ( 1 + 3 ) = 4 |
| 127 |
126
|
oveq1i |
|- ( ( 1 + 3 ) x. ( A x. ( B ^ 3 ) ) ) = ( 4 x. ( A x. ( B ^ 3 ) ) ) |
| 128 |
112 33 91
|
adddird |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 1 + 3 ) x. ( A x. ( B ^ 3 ) ) ) = ( ( 1 x. ( A x. ( B ^ 3 ) ) ) + ( 3 x. ( A x. ( B ^ 3 ) ) ) ) ) |
| 129 |
127 128
|
eqtr3id |
|- ( ( A e. CC /\ B e. CC ) -> ( 4 x. ( A x. ( B ^ 3 ) ) ) = ( ( 1 x. ( A x. ( B ^ 3 ) ) ) + ( 3 x. ( A x. ( B ^ 3 ) ) ) ) ) |
| 130 |
91
|
mullidd |
|- ( ( A e. CC /\ B e. CC ) -> ( 1 x. ( A x. ( B ^ 3 ) ) ) = ( A x. ( B ^ 3 ) ) ) |
| 131 |
130
|
oveq1d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 1 x. ( A x. ( B ^ 3 ) ) ) + ( 3 x. ( A x. ( B ^ 3 ) ) ) ) = ( ( A x. ( B ^ 3 ) ) + ( 3 x. ( A x. ( B ^ 3 ) ) ) ) ) |
| 132 |
129 131
|
eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( 4 x. ( A x. ( B ^ 3 ) ) ) = ( ( A x. ( B ^ 3 ) ) + ( 3 x. ( A x. ( B ^ 3 ) ) ) ) ) |
| 133 |
132
|
oveq1d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 4 x. ( A x. ( B ^ 3 ) ) ) + ( B ^ 4 ) ) = ( ( ( A x. ( B ^ 3 ) ) + ( 3 x. ( A x. ( B ^ 3 ) ) ) ) + ( B ^ 4 ) ) ) |
| 134 |
91 93 96
|
addassd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A x. ( B ^ 3 ) ) + ( 3 x. ( A x. ( B ^ 3 ) ) ) ) + ( B ^ 4 ) ) = ( ( A x. ( B ^ 3 ) ) + ( ( 3 x. ( A x. ( B ^ 3 ) ) ) + ( B ^ 4 ) ) ) ) |
| 135 |
133 134
|
eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 4 x. ( A x. ( B ^ 3 ) ) ) + ( B ^ 4 ) ) = ( ( A x. ( B ^ 3 ) ) + ( ( 3 x. ( A x. ( B ^ 3 ) ) ) + ( B ^ 4 ) ) ) ) |
| 136 |
124 135
|
oveq12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 6 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) + ( ( 4 x. ( A x. ( B ^ 3 ) ) ) + ( B ^ 4 ) ) ) = ( ( ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) + ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) ) + ( ( A x. ( B ^ 3 ) ) + ( ( 3 x. ( A x. ( B ^ 3 ) ) ) + ( B ^ 4 ) ) ) ) ) |
| 137 |
120 136
|
eqtr4d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) + ( A x. ( B ^ 3 ) ) ) + ( ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) + ( ( 3 x. ( A x. ( B ^ 3 ) ) ) + ( B ^ 4 ) ) ) ) = ( ( 6 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) + ( ( 4 x. ( A x. ( B ^ 3 ) ) ) + ( B ^ 4 ) ) ) ) |
| 138 |
119 137
|
oveq12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( A ^ 4 ) + ( 3 x. ( ( A ^ 3 ) x. B ) ) ) + ( ( A ^ 3 ) x. B ) ) + ( ( ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) + ( A x. ( B ^ 3 ) ) ) + ( ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) + ( ( 3 x. ( A x. ( B ^ 3 ) ) ) + ( B ^ 4 ) ) ) ) ) = ( ( ( A ^ 4 ) + ( 4 x. ( ( A ^ 3 ) x. B ) ) ) + ( ( 6 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) + ( ( 4 x. ( A x. ( B ^ 3 ) ) ) + ( B ^ 4 ) ) ) ) ) |
| 139 |
108 138
|
eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( A ^ 4 ) + ( 3 x. ( ( A ^ 3 ) x. B ) ) ) + ( ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) + ( A x. ( B ^ 3 ) ) ) ) + ( ( ( A ^ 3 ) x. B ) + ( ( 3 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) + ( ( 3 x. ( A x. ( B ^ 3 ) ) ) + ( B ^ 4 ) ) ) ) ) = ( ( ( A ^ 4 ) + ( 4 x. ( ( A ^ 3 ) x. B ) ) ) + ( ( 6 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) + ( ( 4 x. ( A x. ( B ^ 3 ) ) ) + ( B ^ 4 ) ) ) ) ) |
| 140 |
28 100 139
|
3eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) x. ( A + B ) ) = ( ( ( A ^ 4 ) + ( 4 x. ( ( A ^ 3 ) x. B ) ) ) + ( ( 6 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) + ( ( 4 x. ( A x. ( B ^ 3 ) ) ) + ( B ^ 4 ) ) ) ) ) |
| 141 |
7 9 140
|
3eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ 4 ) = ( ( ( A ^ 4 ) + ( 4 x. ( ( A ^ 3 ) x. B ) ) ) + ( ( 6 x. ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) + ( ( 4 x. ( A x. ( B ^ 3 ) ) ) + ( B ^ 4 ) ) ) ) ) |