| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1cubr.r |
|- R = { 1 , ( ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) / 2 ) , ( ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) / 2 ) } |
| 2 |
|
ax-1cn |
|- 1 e. CC |
| 3 |
|
neg1cn |
|- -u 1 e. CC |
| 4 |
|
ax-icn |
|- _i e. CC |
| 5 |
|
3cn |
|- 3 e. CC |
| 6 |
|
sqrtcl |
|- ( 3 e. CC -> ( sqrt ` 3 ) e. CC ) |
| 7 |
5 6
|
ax-mp |
|- ( sqrt ` 3 ) e. CC |
| 8 |
4 7
|
mulcli |
|- ( _i x. ( sqrt ` 3 ) ) e. CC |
| 9 |
3 8
|
addcli |
|- ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) e. CC |
| 10 |
|
halfcl |
|- ( ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) e. CC -> ( ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) / 2 ) e. CC ) |
| 11 |
9 10
|
ax-mp |
|- ( ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) / 2 ) e. CC |
| 12 |
3 8
|
subcli |
|- ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) e. CC |
| 13 |
|
halfcl |
|- ( ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) e. CC -> ( ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) / 2 ) e. CC ) |
| 14 |
12 13
|
ax-mp |
|- ( ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) / 2 ) e. CC |
| 15 |
2 11 14
|
3pm3.2i |
|- ( 1 e. CC /\ ( ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) / 2 ) e. CC /\ ( ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) / 2 ) e. CC ) |
| 16 |
2
|
elexi |
|- 1 e. _V |
| 17 |
|
ovex |
|- ( ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) / 2 ) e. _V |
| 18 |
|
ovex |
|- ( ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) / 2 ) e. _V |
| 19 |
16 17 18
|
tpss |
|- ( ( 1 e. CC /\ ( ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) / 2 ) e. CC /\ ( ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) / 2 ) e. CC ) <-> { 1 , ( ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) / 2 ) , ( ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) / 2 ) } C_ CC ) |
| 20 |
15 19
|
mpbi |
|- { 1 , ( ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) / 2 ) , ( ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) / 2 ) } C_ CC |
| 21 |
1 20
|
eqsstri |
|- R C_ CC |
| 22 |
21
|
sseli |
|- ( A e. R -> A e. CC ) |
| 23 |
22
|
pm4.71ri |
|- ( A e. R <-> ( A e. CC /\ A e. R ) ) |
| 24 |
|
3nn |
|- 3 e. NN |
| 25 |
|
cxpeq |
|- ( ( A e. CC /\ 3 e. NN /\ 1 e. CC ) -> ( ( A ^ 3 ) = 1 <-> E. n e. ( 0 ... ( 3 - 1 ) ) A = ( ( 1 ^c ( 1 / 3 ) ) x. ( ( -u 1 ^c ( 2 / 3 ) ) ^ n ) ) ) ) |
| 26 |
24 2 25
|
mp3an23 |
|- ( A e. CC -> ( ( A ^ 3 ) = 1 <-> E. n e. ( 0 ... ( 3 - 1 ) ) A = ( ( 1 ^c ( 1 / 3 ) ) x. ( ( -u 1 ^c ( 2 / 3 ) ) ^ n ) ) ) ) |
| 27 |
|
eltpg |
|- ( A e. CC -> ( A e. { 1 , ( ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) / 2 ) , ( ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) / 2 ) } <-> ( A = 1 \/ A = ( ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) / 2 ) \/ A = ( ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) / 2 ) ) ) ) |
| 28 |
1
|
eleq2i |
|- ( A e. R <-> A e. { 1 , ( ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) / 2 ) , ( ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) / 2 ) } ) |
| 29 |
|
3m1e2 |
|- ( 3 - 1 ) = 2 |
| 30 |
|
2cn |
|- 2 e. CC |
| 31 |
30
|
addlidi |
|- ( 0 + 2 ) = 2 |
| 32 |
29 31
|
eqtr4i |
|- ( 3 - 1 ) = ( 0 + 2 ) |
| 33 |
32
|
oveq2i |
|- ( 0 ... ( 3 - 1 ) ) = ( 0 ... ( 0 + 2 ) ) |
| 34 |
|
0z |
|- 0 e. ZZ |
| 35 |
|
fztp |
|- ( 0 e. ZZ -> ( 0 ... ( 0 + 2 ) ) = { 0 , ( 0 + 1 ) , ( 0 + 2 ) } ) |
| 36 |
34 35
|
ax-mp |
|- ( 0 ... ( 0 + 2 ) ) = { 0 , ( 0 + 1 ) , ( 0 + 2 ) } |
| 37 |
33 36
|
eqtri |
|- ( 0 ... ( 3 - 1 ) ) = { 0 , ( 0 + 1 ) , ( 0 + 2 ) } |
| 38 |
37
|
rexeqi |
|- ( E. n e. ( 0 ... ( 3 - 1 ) ) A = ( ( 1 ^c ( 1 / 3 ) ) x. ( ( -u 1 ^c ( 2 / 3 ) ) ^ n ) ) <-> E. n e. { 0 , ( 0 + 1 ) , ( 0 + 2 ) } A = ( ( 1 ^c ( 1 / 3 ) ) x. ( ( -u 1 ^c ( 2 / 3 ) ) ^ n ) ) ) |
| 39 |
|
3ne0 |
|- 3 =/= 0 |
| 40 |
5 39
|
reccli |
|- ( 1 / 3 ) e. CC |
| 41 |
|
1cxp |
|- ( ( 1 / 3 ) e. CC -> ( 1 ^c ( 1 / 3 ) ) = 1 ) |
| 42 |
40 41
|
ax-mp |
|- ( 1 ^c ( 1 / 3 ) ) = 1 |
| 43 |
42
|
oveq1i |
|- ( ( 1 ^c ( 1 / 3 ) ) x. ( ( -u 1 ^c ( 2 / 3 ) ) ^ n ) ) = ( 1 x. ( ( -u 1 ^c ( 2 / 3 ) ) ^ n ) ) |
| 44 |
43
|
eqeq2i |
|- ( A = ( ( 1 ^c ( 1 / 3 ) ) x. ( ( -u 1 ^c ( 2 / 3 ) ) ^ n ) ) <-> A = ( 1 x. ( ( -u 1 ^c ( 2 / 3 ) ) ^ n ) ) ) |
| 45 |
44
|
rexbii |
|- ( E. n e. { 0 , ( 0 + 1 ) , ( 0 + 2 ) } A = ( ( 1 ^c ( 1 / 3 ) ) x. ( ( -u 1 ^c ( 2 / 3 ) ) ^ n ) ) <-> E. n e. { 0 , ( 0 + 1 ) , ( 0 + 2 ) } A = ( 1 x. ( ( -u 1 ^c ( 2 / 3 ) ) ^ n ) ) ) |
| 46 |
34
|
elexi |
|- 0 e. _V |
| 47 |
|
ovex |
|- ( 0 + 1 ) e. _V |
| 48 |
|
ovex |
|- ( 0 + 2 ) e. _V |
| 49 |
|
oveq2 |
|- ( n = 0 -> ( ( -u 1 ^c ( 2 / 3 ) ) ^ n ) = ( ( -u 1 ^c ( 2 / 3 ) ) ^ 0 ) ) |
| 50 |
30 5 39
|
divcli |
|- ( 2 / 3 ) e. CC |
| 51 |
|
cxpcl |
|- ( ( -u 1 e. CC /\ ( 2 / 3 ) e. CC ) -> ( -u 1 ^c ( 2 / 3 ) ) e. CC ) |
| 52 |
3 50 51
|
mp2an |
|- ( -u 1 ^c ( 2 / 3 ) ) e. CC |
| 53 |
|
exp0 |
|- ( ( -u 1 ^c ( 2 / 3 ) ) e. CC -> ( ( -u 1 ^c ( 2 / 3 ) ) ^ 0 ) = 1 ) |
| 54 |
52 53
|
ax-mp |
|- ( ( -u 1 ^c ( 2 / 3 ) ) ^ 0 ) = 1 |
| 55 |
49 54
|
eqtrdi |
|- ( n = 0 -> ( ( -u 1 ^c ( 2 / 3 ) ) ^ n ) = 1 ) |
| 56 |
55
|
oveq2d |
|- ( n = 0 -> ( 1 x. ( ( -u 1 ^c ( 2 / 3 ) ) ^ n ) ) = ( 1 x. 1 ) ) |
| 57 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
| 58 |
56 57
|
eqtrdi |
|- ( n = 0 -> ( 1 x. ( ( -u 1 ^c ( 2 / 3 ) ) ^ n ) ) = 1 ) |
| 59 |
58
|
eqeq2d |
|- ( n = 0 -> ( A = ( 1 x. ( ( -u 1 ^c ( 2 / 3 ) ) ^ n ) ) <-> A = 1 ) ) |
| 60 |
|
id |
|- ( n = ( 0 + 1 ) -> n = ( 0 + 1 ) ) |
| 61 |
2
|
addlidi |
|- ( 0 + 1 ) = 1 |
| 62 |
60 61
|
eqtrdi |
|- ( n = ( 0 + 1 ) -> n = 1 ) |
| 63 |
62
|
oveq2d |
|- ( n = ( 0 + 1 ) -> ( ( -u 1 ^c ( 2 / 3 ) ) ^ n ) = ( ( -u 1 ^c ( 2 / 3 ) ) ^ 1 ) ) |
| 64 |
|
exp1 |
|- ( ( -u 1 ^c ( 2 / 3 ) ) e. CC -> ( ( -u 1 ^c ( 2 / 3 ) ) ^ 1 ) = ( -u 1 ^c ( 2 / 3 ) ) ) |
| 65 |
52 64
|
ax-mp |
|- ( ( -u 1 ^c ( 2 / 3 ) ) ^ 1 ) = ( -u 1 ^c ( 2 / 3 ) ) |
| 66 |
63 65
|
eqtrdi |
|- ( n = ( 0 + 1 ) -> ( ( -u 1 ^c ( 2 / 3 ) ) ^ n ) = ( -u 1 ^c ( 2 / 3 ) ) ) |
| 67 |
66
|
oveq2d |
|- ( n = ( 0 + 1 ) -> ( 1 x. ( ( -u 1 ^c ( 2 / 3 ) ) ^ n ) ) = ( 1 x. ( -u 1 ^c ( 2 / 3 ) ) ) ) |
| 68 |
52
|
mullidi |
|- ( 1 x. ( -u 1 ^c ( 2 / 3 ) ) ) = ( -u 1 ^c ( 2 / 3 ) ) |
| 69 |
|
1cubrlem |
|- ( ( -u 1 ^c ( 2 / 3 ) ) = ( ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) / 2 ) /\ ( ( -u 1 ^c ( 2 / 3 ) ) ^ 2 ) = ( ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) / 2 ) ) |
| 70 |
69
|
simpli |
|- ( -u 1 ^c ( 2 / 3 ) ) = ( ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) / 2 ) |
| 71 |
68 70
|
eqtri |
|- ( 1 x. ( -u 1 ^c ( 2 / 3 ) ) ) = ( ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) / 2 ) |
| 72 |
67 71
|
eqtrdi |
|- ( n = ( 0 + 1 ) -> ( 1 x. ( ( -u 1 ^c ( 2 / 3 ) ) ^ n ) ) = ( ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) / 2 ) ) |
| 73 |
72
|
eqeq2d |
|- ( n = ( 0 + 1 ) -> ( A = ( 1 x. ( ( -u 1 ^c ( 2 / 3 ) ) ^ n ) ) <-> A = ( ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) / 2 ) ) ) |
| 74 |
|
id |
|- ( n = ( 0 + 2 ) -> n = ( 0 + 2 ) ) |
| 75 |
74 31
|
eqtrdi |
|- ( n = ( 0 + 2 ) -> n = 2 ) |
| 76 |
75
|
oveq2d |
|- ( n = ( 0 + 2 ) -> ( ( -u 1 ^c ( 2 / 3 ) ) ^ n ) = ( ( -u 1 ^c ( 2 / 3 ) ) ^ 2 ) ) |
| 77 |
76
|
oveq2d |
|- ( n = ( 0 + 2 ) -> ( 1 x. ( ( -u 1 ^c ( 2 / 3 ) ) ^ n ) ) = ( 1 x. ( ( -u 1 ^c ( 2 / 3 ) ) ^ 2 ) ) ) |
| 78 |
52
|
sqcli |
|- ( ( -u 1 ^c ( 2 / 3 ) ) ^ 2 ) e. CC |
| 79 |
78
|
mullidi |
|- ( 1 x. ( ( -u 1 ^c ( 2 / 3 ) ) ^ 2 ) ) = ( ( -u 1 ^c ( 2 / 3 ) ) ^ 2 ) |
| 80 |
69
|
simpri |
|- ( ( -u 1 ^c ( 2 / 3 ) ) ^ 2 ) = ( ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) / 2 ) |
| 81 |
79 80
|
eqtri |
|- ( 1 x. ( ( -u 1 ^c ( 2 / 3 ) ) ^ 2 ) ) = ( ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) / 2 ) |
| 82 |
77 81
|
eqtrdi |
|- ( n = ( 0 + 2 ) -> ( 1 x. ( ( -u 1 ^c ( 2 / 3 ) ) ^ n ) ) = ( ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) / 2 ) ) |
| 83 |
82
|
eqeq2d |
|- ( n = ( 0 + 2 ) -> ( A = ( 1 x. ( ( -u 1 ^c ( 2 / 3 ) ) ^ n ) ) <-> A = ( ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) / 2 ) ) ) |
| 84 |
46 47 48 59 73 83
|
rextp |
|- ( E. n e. { 0 , ( 0 + 1 ) , ( 0 + 2 ) } A = ( 1 x. ( ( -u 1 ^c ( 2 / 3 ) ) ^ n ) ) <-> ( A = 1 \/ A = ( ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) / 2 ) \/ A = ( ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) / 2 ) ) ) |
| 85 |
38 45 84
|
3bitri |
|- ( E. n e. ( 0 ... ( 3 - 1 ) ) A = ( ( 1 ^c ( 1 / 3 ) ) x. ( ( -u 1 ^c ( 2 / 3 ) ) ^ n ) ) <-> ( A = 1 \/ A = ( ( -u 1 + ( _i x. ( sqrt ` 3 ) ) ) / 2 ) \/ A = ( ( -u 1 - ( _i x. ( sqrt ` 3 ) ) ) / 2 ) ) ) |
| 86 |
27 28 85
|
3bitr4g |
|- ( A e. CC -> ( A e. R <-> E. n e. ( 0 ... ( 3 - 1 ) ) A = ( ( 1 ^c ( 1 / 3 ) ) x. ( ( -u 1 ^c ( 2 / 3 ) ) ^ n ) ) ) ) |
| 87 |
26 86
|
bitr4d |
|- ( A e. CC -> ( ( A ^ 3 ) = 1 <-> A e. R ) ) |
| 88 |
87
|
pm5.32i |
|- ( ( A e. CC /\ ( A ^ 3 ) = 1 ) <-> ( A e. CC /\ A e. R ) ) |
| 89 |
23 88
|
bitr4i |
|- ( A e. R <-> ( A e. CC /\ ( A ^ 3 ) = 1 ) ) |