Metamath Proof Explorer


Theorem 1cubr

Description: The cube roots of unity. (Contributed by Mario Carneiro, 23-Apr-2015)

Ref Expression
Hypothesis 1cubr.r R=1-1+i32-1-i32
Assertion 1cubr ARAA3=1

Proof

Step Hyp Ref Expression
1 1cubr.r R=1-1+i32-1-i32
2 ax-1cn 1
3 neg1cn 1
4 ax-icn i
5 3cn 3
6 sqrtcl 33
7 5 6 ax-mp 3
8 4 7 mulcli i3
9 3 8 addcli -1+i3
10 halfcl -1+i3-1+i32
11 9 10 ax-mp -1+i32
12 3 8 subcli -1-i3
13 halfcl -1-i3-1-i32
14 12 13 ax-mp -1-i32
15 2 11 14 3pm3.2i 1-1+i32-1-i32
16 2 elexi 1V
17 ovex -1+i32V
18 ovex -1-i32V
19 16 17 18 tpss 1-1+i32-1-i321-1+i32-1-i32
20 15 19 mpbi 1-1+i32-1-i32
21 1 20 eqsstri R
22 21 sseli ARA
23 22 pm4.71ri ARAAR
24 3nn 3
25 cxpeq A31A3=1n031A=113-123n
26 24 2 25 mp3an23 AA3=1n031A=113-123n
27 eltpg AA1-1+i32-1-i32A=1A=-1+i32A=-1-i32
28 1 eleq2i ARA1-1+i32-1-i32
29 3m1e2 31=2
30 2cn 2
31 30 addlidi 0+2=2
32 29 31 eqtr4i 31=0+2
33 32 oveq2i 031=00+2
34 0z 0
35 fztp 000+2=00+10+2
36 34 35 ax-mp 00+2=00+10+2
37 33 36 eqtri 031=00+10+2
38 37 rexeqi n031A=113-123nn00+10+2A=113-123n
39 3ne0 30
40 5 39 reccli 13
41 1cxp 13113=1
42 40 41 ax-mp 113=1
43 42 oveq1i 113-123n=1-123n
44 43 eqeq2i A=113-123nA=1-123n
45 44 rexbii n00+10+2A=113-123nn00+10+2A=1-123n
46 34 elexi 0V
47 ovex 0+1V
48 ovex 0+2V
49 oveq2 n=0-123n=-1230
50 30 5 39 divcli 23
51 cxpcl 123123
52 3 50 51 mp2an 123
53 exp0 123-1230=1
54 52 53 ax-mp -1230=1
55 49 54 eqtrdi n=0-123n=1
56 55 oveq2d n=01-123n=11
57 1t1e1 11=1
58 56 57 eqtrdi n=01-123n=1
59 58 eqeq2d n=0A=1-123nA=1
60 id n=0+1n=0+1
61 2 addlidi 0+1=1
62 60 61 eqtrdi n=0+1n=1
63 62 oveq2d n=0+1-123n=-1231
64 exp1 123-1231=123
65 52 64 ax-mp -1231=123
66 63 65 eqtrdi n=0+1-123n=123
67 66 oveq2d n=0+11-123n=1123
68 52 mullidi 1123=123
69 1cubrlem 123=-1+i32-1232=-1-i32
70 69 simpli 123=-1+i32
71 68 70 eqtri 1123=-1+i32
72 67 71 eqtrdi n=0+11-123n=-1+i32
73 72 eqeq2d n=0+1A=1-123nA=-1+i32
74 id n=0+2n=0+2
75 74 31 eqtrdi n=0+2n=2
76 75 oveq2d n=0+2-123n=-1232
77 76 oveq2d n=0+21-123n=1-1232
78 52 sqcli -1232
79 78 mullidi 1-1232=-1232
80 69 simpri -1232=-1-i32
81 79 80 eqtri 1-1232=-1-i32
82 77 81 eqtrdi n=0+21-123n=-1-i32
83 82 eqeq2d n=0+2A=1-123nA=-1-i32
84 46 47 48 59 73 83 rextp n00+10+2A=1-123nA=1A=-1+i32A=-1-i32
85 38 45 84 3bitri n031A=113-123nA=1A=-1+i32A=-1-i32
86 27 28 85 3bitr4g AARn031A=113-123n
87 26 86 bitr4d AA3=1AR
88 87 pm5.32i AA3=1AAR
89 23 88 bitr4i ARAA3=1