Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Solutions of quadratic, cubic, and quartic equations
1cubr
Next ⟩
dcubic1lem
Metamath Proof Explorer
Ascii
Unicode
Theorem
1cubr
Description:
The cube roots of unity.
(Contributed by
Mario Carneiro
, 23-Apr-2015)
Ref
Expression
Hypothesis
1cubr.r
⊢
R
=
1
-
1
+
i
3
2
-
1
-
i
3
2
Assertion
1cubr
⊢
A
∈
R
↔
A
∈
ℂ
∧
A
3
=
1
Proof
Step
Hyp
Ref
Expression
1
1cubr.r
⊢
R
=
1
-
1
+
i
3
2
-
1
-
i
3
2
2
ax-1cn
⊢
1
∈
ℂ
3
neg1cn
⊢
−
1
∈
ℂ
4
ax-icn
⊢
i
∈
ℂ
5
3cn
⊢
3
∈
ℂ
6
sqrtcl
⊢
3
∈
ℂ
→
3
∈
ℂ
7
5
6
ax-mp
⊢
3
∈
ℂ
8
4
7
mulcli
⊢
i
3
∈
ℂ
9
3
8
addcli
⊢
-
1
+
i
3
∈
ℂ
10
halfcl
⊢
-
1
+
i
3
∈
ℂ
→
-
1
+
i
3
2
∈
ℂ
11
9
10
ax-mp
⊢
-
1
+
i
3
2
∈
ℂ
12
3
8
subcli
⊢
-
1
-
i
3
∈
ℂ
13
halfcl
⊢
-
1
-
i
3
∈
ℂ
→
-
1
-
i
3
2
∈
ℂ
14
12
13
ax-mp
⊢
-
1
-
i
3
2
∈
ℂ
15
2
11
14
3pm3.2i
⊢
1
∈
ℂ
∧
-
1
+
i
3
2
∈
ℂ
∧
-
1
-
i
3
2
∈
ℂ
16
2
elexi
⊢
1
∈
V
17
ovex
⊢
-
1
+
i
3
2
∈
V
18
ovex
⊢
-
1
-
i
3
2
∈
V
19
16
17
18
tpss
⊢
1
∈
ℂ
∧
-
1
+
i
3
2
∈
ℂ
∧
-
1
-
i
3
2
∈
ℂ
↔
1
-
1
+
i
3
2
-
1
-
i
3
2
⊆
ℂ
20
15
19
mpbi
⊢
1
-
1
+
i
3
2
-
1
-
i
3
2
⊆
ℂ
21
1
20
eqsstri
⊢
R
⊆
ℂ
22
21
sseli
⊢
A
∈
R
→
A
∈
ℂ
23
22
pm4.71ri
⊢
A
∈
R
↔
A
∈
ℂ
∧
A
∈
R
24
3nn
⊢
3
∈
ℕ
25
cxpeq
⊢
A
∈
ℂ
∧
3
∈
ℕ
∧
1
∈
ℂ
→
A
3
=
1
↔
∃
n
∈
0
…
3
−
1
A
=
1
1
3
-1
2
3
n
26
24
2
25
mp3an23
⊢
A
∈
ℂ
→
A
3
=
1
↔
∃
n
∈
0
…
3
−
1
A
=
1
1
3
-1
2
3
n
27
eltpg
⊢
A
∈
ℂ
→
A
∈
1
-
1
+
i
3
2
-
1
-
i
3
2
↔
A
=
1
∨
A
=
-
1
+
i
3
2
∨
A
=
-
1
-
i
3
2
28
1
eleq2i
⊢
A
∈
R
↔
A
∈
1
-
1
+
i
3
2
-
1
-
i
3
2
29
3m1e2
⊢
3
−
1
=
2
30
2cn
⊢
2
∈
ℂ
31
30
addlidi
⊢
0
+
2
=
2
32
29
31
eqtr4i
⊢
3
−
1
=
0
+
2
33
32
oveq2i
⊢
0
…
3
−
1
=
0
…
0
+
2
34
0z
⊢
0
∈
ℤ
35
fztp
⊢
0
∈
ℤ
→
0
…
0
+
2
=
0
0
+
1
0
+
2
36
34
35
ax-mp
⊢
0
…
0
+
2
=
0
0
+
1
0
+
2
37
33
36
eqtri
⊢
0
…
3
−
1
=
0
0
+
1
0
+
2
38
37
rexeqi
⊢
∃
n
∈
0
…
3
−
1
A
=
1
1
3
-1
2
3
n
↔
∃
n
∈
0
0
+
1
0
+
2
A
=
1
1
3
-1
2
3
n
39
3ne0
⊢
3
≠
0
40
5
39
reccli
⊢
1
3
∈
ℂ
41
1cxp
⊢
1
3
∈
ℂ
→
1
1
3
=
1
42
40
41
ax-mp
⊢
1
1
3
=
1
43
42
oveq1i
⊢
1
1
3
-1
2
3
n
=
1
-1
2
3
n
44
43
eqeq2i
⊢
A
=
1
1
3
-1
2
3
n
↔
A
=
1
-1
2
3
n
45
44
rexbii
⊢
∃
n
∈
0
0
+
1
0
+
2
A
=
1
1
3
-1
2
3
n
↔
∃
n
∈
0
0
+
1
0
+
2
A
=
1
-1
2
3
n
46
34
elexi
⊢
0
∈
V
47
ovex
⊢
0
+
1
∈
V
48
ovex
⊢
0
+
2
∈
V
49
oveq2
⊢
n
=
0
→
-1
2
3
n
=
-1
2
3
0
50
30
5
39
divcli
⊢
2
3
∈
ℂ
51
cxpcl
⊢
−
1
∈
ℂ
∧
2
3
∈
ℂ
→
−
1
2
3
∈
ℂ
52
3
50
51
mp2an
⊢
−
1
2
3
∈
ℂ
53
exp0
⊢
−
1
2
3
∈
ℂ
→
-1
2
3
0
=
1
54
52
53
ax-mp
⊢
-1
2
3
0
=
1
55
49
54
eqtrdi
⊢
n
=
0
→
-1
2
3
n
=
1
56
55
oveq2d
⊢
n
=
0
→
1
-1
2
3
n
=
1
⋅
1
57
1t1e1
⊢
1
⋅
1
=
1
58
56
57
eqtrdi
⊢
n
=
0
→
1
-1
2
3
n
=
1
59
58
eqeq2d
⊢
n
=
0
→
A
=
1
-1
2
3
n
↔
A
=
1
60
id
⊢
n
=
0
+
1
→
n
=
0
+
1
61
2
addlidi
⊢
0
+
1
=
1
62
60
61
eqtrdi
⊢
n
=
0
+
1
→
n
=
1
63
62
oveq2d
⊢
n
=
0
+
1
→
-1
2
3
n
=
-1
2
3
1
64
exp1
⊢
−
1
2
3
∈
ℂ
→
-1
2
3
1
=
−
1
2
3
65
52
64
ax-mp
⊢
-1
2
3
1
=
−
1
2
3
66
63
65
eqtrdi
⊢
n
=
0
+
1
→
-1
2
3
n
=
−
1
2
3
67
66
oveq2d
⊢
n
=
0
+
1
→
1
-1
2
3
n
=
1
−
1
2
3
68
52
mullidi
⊢
1
−
1
2
3
=
−
1
2
3
69
1cubrlem
⊢
−
1
2
3
=
-
1
+
i
3
2
∧
-1
2
3
2
=
-
1
-
i
3
2
70
69
simpli
⊢
−
1
2
3
=
-
1
+
i
3
2
71
68
70
eqtri
⊢
1
−
1
2
3
=
-
1
+
i
3
2
72
67
71
eqtrdi
⊢
n
=
0
+
1
→
1
-1
2
3
n
=
-
1
+
i
3
2
73
72
eqeq2d
⊢
n
=
0
+
1
→
A
=
1
-1
2
3
n
↔
A
=
-
1
+
i
3
2
74
id
⊢
n
=
0
+
2
→
n
=
0
+
2
75
74
31
eqtrdi
⊢
n
=
0
+
2
→
n
=
2
76
75
oveq2d
⊢
n
=
0
+
2
→
-1
2
3
n
=
-1
2
3
2
77
76
oveq2d
⊢
n
=
0
+
2
→
1
-1
2
3
n
=
1
-1
2
3
2
78
52
sqcli
⊢
-1
2
3
2
∈
ℂ
79
78
mullidi
⊢
1
-1
2
3
2
=
-1
2
3
2
80
69
simpri
⊢
-1
2
3
2
=
-
1
-
i
3
2
81
79
80
eqtri
⊢
1
-1
2
3
2
=
-
1
-
i
3
2
82
77
81
eqtrdi
⊢
n
=
0
+
2
→
1
-1
2
3
n
=
-
1
-
i
3
2
83
82
eqeq2d
⊢
n
=
0
+
2
→
A
=
1
-1
2
3
n
↔
A
=
-
1
-
i
3
2
84
46
47
48
59
73
83
rextp
⊢
∃
n
∈
0
0
+
1
0
+
2
A
=
1
-1
2
3
n
↔
A
=
1
∨
A
=
-
1
+
i
3
2
∨
A
=
-
1
-
i
3
2
85
38
45
84
3bitri
⊢
∃
n
∈
0
…
3
−
1
A
=
1
1
3
-1
2
3
n
↔
A
=
1
∨
A
=
-
1
+
i
3
2
∨
A
=
-
1
-
i
3
2
86
27
28
85
3bitr4g
⊢
A
∈
ℂ
→
A
∈
R
↔
∃
n
∈
0
…
3
−
1
A
=
1
1
3
-1
2
3
n
87
26
86
bitr4d
⊢
A
∈
ℂ
→
A
3
=
1
↔
A
∈
R
88
87
pm5.32i
⊢
A
∈
ℂ
∧
A
3
=
1
↔
A
∈
ℂ
∧
A
∈
R
89
23
88
bitr4i
⊢
A
∈
R
↔
A
∈
ℂ
∧
A
3
=
1