| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1cubr.r |
⊢ 𝑅 = { 1 , ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) , ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) } |
| 2 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 3 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 4 |
|
ax-icn |
⊢ i ∈ ℂ |
| 5 |
|
3cn |
⊢ 3 ∈ ℂ |
| 6 |
|
sqrtcl |
⊢ ( 3 ∈ ℂ → ( √ ‘ 3 ) ∈ ℂ ) |
| 7 |
5 6
|
ax-mp |
⊢ ( √ ‘ 3 ) ∈ ℂ |
| 8 |
4 7
|
mulcli |
⊢ ( i · ( √ ‘ 3 ) ) ∈ ℂ |
| 9 |
3 8
|
addcli |
⊢ ( - 1 + ( i · ( √ ‘ 3 ) ) ) ∈ ℂ |
| 10 |
|
halfcl |
⊢ ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) ∈ ℂ → ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) ∈ ℂ ) |
| 11 |
9 10
|
ax-mp |
⊢ ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) ∈ ℂ |
| 12 |
3 8
|
subcli |
⊢ ( - 1 − ( i · ( √ ‘ 3 ) ) ) ∈ ℂ |
| 13 |
|
halfcl |
⊢ ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) ∈ ℂ → ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) ∈ ℂ ) |
| 14 |
12 13
|
ax-mp |
⊢ ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) ∈ ℂ |
| 15 |
2 11 14
|
3pm3.2i |
⊢ ( 1 ∈ ℂ ∧ ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) ∈ ℂ ∧ ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) ∈ ℂ ) |
| 16 |
2
|
elexi |
⊢ 1 ∈ V |
| 17 |
|
ovex |
⊢ ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) ∈ V |
| 18 |
|
ovex |
⊢ ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) ∈ V |
| 19 |
16 17 18
|
tpss |
⊢ ( ( 1 ∈ ℂ ∧ ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) ∈ ℂ ∧ ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) ∈ ℂ ) ↔ { 1 , ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) , ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) } ⊆ ℂ ) |
| 20 |
15 19
|
mpbi |
⊢ { 1 , ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) , ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) } ⊆ ℂ |
| 21 |
1 20
|
eqsstri |
⊢ 𝑅 ⊆ ℂ |
| 22 |
21
|
sseli |
⊢ ( 𝐴 ∈ 𝑅 → 𝐴 ∈ ℂ ) |
| 23 |
22
|
pm4.71ri |
⊢ ( 𝐴 ∈ 𝑅 ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ 𝑅 ) ) |
| 24 |
|
3nn |
⊢ 3 ∈ ℕ |
| 25 |
|
cxpeq |
⊢ ( ( 𝐴 ∈ ℂ ∧ 3 ∈ ℕ ∧ 1 ∈ ℂ ) → ( ( 𝐴 ↑ 3 ) = 1 ↔ ∃ 𝑛 ∈ ( 0 ... ( 3 − 1 ) ) 𝐴 = ( ( 1 ↑𝑐 ( 1 / 3 ) ) · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) ) ) |
| 26 |
24 2 25
|
mp3an23 |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 3 ) = 1 ↔ ∃ 𝑛 ∈ ( 0 ... ( 3 − 1 ) ) 𝐴 = ( ( 1 ↑𝑐 ( 1 / 3 ) ) · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) ) ) |
| 27 |
|
eltpg |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ { 1 , ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) , ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) } ↔ ( 𝐴 = 1 ∨ 𝐴 = ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) ∨ 𝐴 = ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) ) ) ) |
| 28 |
1
|
eleq2i |
⊢ ( 𝐴 ∈ 𝑅 ↔ 𝐴 ∈ { 1 , ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) , ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) } ) |
| 29 |
|
3m1e2 |
⊢ ( 3 − 1 ) = 2 |
| 30 |
|
2cn |
⊢ 2 ∈ ℂ |
| 31 |
30
|
addlidi |
⊢ ( 0 + 2 ) = 2 |
| 32 |
29 31
|
eqtr4i |
⊢ ( 3 − 1 ) = ( 0 + 2 ) |
| 33 |
32
|
oveq2i |
⊢ ( 0 ... ( 3 − 1 ) ) = ( 0 ... ( 0 + 2 ) ) |
| 34 |
|
0z |
⊢ 0 ∈ ℤ |
| 35 |
|
fztp |
⊢ ( 0 ∈ ℤ → ( 0 ... ( 0 + 2 ) ) = { 0 , ( 0 + 1 ) , ( 0 + 2 ) } ) |
| 36 |
34 35
|
ax-mp |
⊢ ( 0 ... ( 0 + 2 ) ) = { 0 , ( 0 + 1 ) , ( 0 + 2 ) } |
| 37 |
33 36
|
eqtri |
⊢ ( 0 ... ( 3 − 1 ) ) = { 0 , ( 0 + 1 ) , ( 0 + 2 ) } |
| 38 |
37
|
rexeqi |
⊢ ( ∃ 𝑛 ∈ ( 0 ... ( 3 − 1 ) ) 𝐴 = ( ( 1 ↑𝑐 ( 1 / 3 ) ) · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) ↔ ∃ 𝑛 ∈ { 0 , ( 0 + 1 ) , ( 0 + 2 ) } 𝐴 = ( ( 1 ↑𝑐 ( 1 / 3 ) ) · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) ) |
| 39 |
|
3ne0 |
⊢ 3 ≠ 0 |
| 40 |
5 39
|
reccli |
⊢ ( 1 / 3 ) ∈ ℂ |
| 41 |
|
1cxp |
⊢ ( ( 1 / 3 ) ∈ ℂ → ( 1 ↑𝑐 ( 1 / 3 ) ) = 1 ) |
| 42 |
40 41
|
ax-mp |
⊢ ( 1 ↑𝑐 ( 1 / 3 ) ) = 1 |
| 43 |
42
|
oveq1i |
⊢ ( ( 1 ↑𝑐 ( 1 / 3 ) ) · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) = ( 1 · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) |
| 44 |
43
|
eqeq2i |
⊢ ( 𝐴 = ( ( 1 ↑𝑐 ( 1 / 3 ) ) · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) ↔ 𝐴 = ( 1 · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) ) |
| 45 |
44
|
rexbii |
⊢ ( ∃ 𝑛 ∈ { 0 , ( 0 + 1 ) , ( 0 + 2 ) } 𝐴 = ( ( 1 ↑𝑐 ( 1 / 3 ) ) · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) ↔ ∃ 𝑛 ∈ { 0 , ( 0 + 1 ) , ( 0 + 2 ) } 𝐴 = ( 1 · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) ) |
| 46 |
34
|
elexi |
⊢ 0 ∈ V |
| 47 |
|
ovex |
⊢ ( 0 + 1 ) ∈ V |
| 48 |
|
ovex |
⊢ ( 0 + 2 ) ∈ V |
| 49 |
|
oveq2 |
⊢ ( 𝑛 = 0 → ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) = ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 0 ) ) |
| 50 |
30 5 39
|
divcli |
⊢ ( 2 / 3 ) ∈ ℂ |
| 51 |
|
cxpcl |
⊢ ( ( - 1 ∈ ℂ ∧ ( 2 / 3 ) ∈ ℂ ) → ( - 1 ↑𝑐 ( 2 / 3 ) ) ∈ ℂ ) |
| 52 |
3 50 51
|
mp2an |
⊢ ( - 1 ↑𝑐 ( 2 / 3 ) ) ∈ ℂ |
| 53 |
|
exp0 |
⊢ ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ∈ ℂ → ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 0 ) = 1 ) |
| 54 |
52 53
|
ax-mp |
⊢ ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 0 ) = 1 |
| 55 |
49 54
|
eqtrdi |
⊢ ( 𝑛 = 0 → ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) = 1 ) |
| 56 |
55
|
oveq2d |
⊢ ( 𝑛 = 0 → ( 1 · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) = ( 1 · 1 ) ) |
| 57 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
| 58 |
56 57
|
eqtrdi |
⊢ ( 𝑛 = 0 → ( 1 · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) = 1 ) |
| 59 |
58
|
eqeq2d |
⊢ ( 𝑛 = 0 → ( 𝐴 = ( 1 · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) ↔ 𝐴 = 1 ) ) |
| 60 |
|
id |
⊢ ( 𝑛 = ( 0 + 1 ) → 𝑛 = ( 0 + 1 ) ) |
| 61 |
2
|
addlidi |
⊢ ( 0 + 1 ) = 1 |
| 62 |
60 61
|
eqtrdi |
⊢ ( 𝑛 = ( 0 + 1 ) → 𝑛 = 1 ) |
| 63 |
62
|
oveq2d |
⊢ ( 𝑛 = ( 0 + 1 ) → ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) = ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 1 ) ) |
| 64 |
|
exp1 |
⊢ ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ∈ ℂ → ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 1 ) = ( - 1 ↑𝑐 ( 2 / 3 ) ) ) |
| 65 |
52 64
|
ax-mp |
⊢ ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 1 ) = ( - 1 ↑𝑐 ( 2 / 3 ) ) |
| 66 |
63 65
|
eqtrdi |
⊢ ( 𝑛 = ( 0 + 1 ) → ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) = ( - 1 ↑𝑐 ( 2 / 3 ) ) ) |
| 67 |
66
|
oveq2d |
⊢ ( 𝑛 = ( 0 + 1 ) → ( 1 · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) = ( 1 · ( - 1 ↑𝑐 ( 2 / 3 ) ) ) ) |
| 68 |
52
|
mullidi |
⊢ ( 1 · ( - 1 ↑𝑐 ( 2 / 3 ) ) ) = ( - 1 ↑𝑐 ( 2 / 3 ) ) |
| 69 |
|
1cubrlem |
⊢ ( ( - 1 ↑𝑐 ( 2 / 3 ) ) = ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) ∧ ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 2 ) = ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) ) |
| 70 |
69
|
simpli |
⊢ ( - 1 ↑𝑐 ( 2 / 3 ) ) = ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) |
| 71 |
68 70
|
eqtri |
⊢ ( 1 · ( - 1 ↑𝑐 ( 2 / 3 ) ) ) = ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) |
| 72 |
67 71
|
eqtrdi |
⊢ ( 𝑛 = ( 0 + 1 ) → ( 1 · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) = ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) ) |
| 73 |
72
|
eqeq2d |
⊢ ( 𝑛 = ( 0 + 1 ) → ( 𝐴 = ( 1 · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) ↔ 𝐴 = ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) ) ) |
| 74 |
|
id |
⊢ ( 𝑛 = ( 0 + 2 ) → 𝑛 = ( 0 + 2 ) ) |
| 75 |
74 31
|
eqtrdi |
⊢ ( 𝑛 = ( 0 + 2 ) → 𝑛 = 2 ) |
| 76 |
75
|
oveq2d |
⊢ ( 𝑛 = ( 0 + 2 ) → ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) = ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 2 ) ) |
| 77 |
76
|
oveq2d |
⊢ ( 𝑛 = ( 0 + 2 ) → ( 1 · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) = ( 1 · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 2 ) ) ) |
| 78 |
52
|
sqcli |
⊢ ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 2 ) ∈ ℂ |
| 79 |
78
|
mullidi |
⊢ ( 1 · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 2 ) ) = ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 2 ) |
| 80 |
69
|
simpri |
⊢ ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 2 ) = ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) |
| 81 |
79 80
|
eqtri |
⊢ ( 1 · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 2 ) ) = ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) |
| 82 |
77 81
|
eqtrdi |
⊢ ( 𝑛 = ( 0 + 2 ) → ( 1 · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) = ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) ) |
| 83 |
82
|
eqeq2d |
⊢ ( 𝑛 = ( 0 + 2 ) → ( 𝐴 = ( 1 · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) ↔ 𝐴 = ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) ) ) |
| 84 |
46 47 48 59 73 83
|
rextp |
⊢ ( ∃ 𝑛 ∈ { 0 , ( 0 + 1 ) , ( 0 + 2 ) } 𝐴 = ( 1 · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) ↔ ( 𝐴 = 1 ∨ 𝐴 = ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) ∨ 𝐴 = ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) ) ) |
| 85 |
38 45 84
|
3bitri |
⊢ ( ∃ 𝑛 ∈ ( 0 ... ( 3 − 1 ) ) 𝐴 = ( ( 1 ↑𝑐 ( 1 / 3 ) ) · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) ↔ ( 𝐴 = 1 ∨ 𝐴 = ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) ∨ 𝐴 = ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) ) ) |
| 86 |
27 28 85
|
3bitr4g |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ 𝑅 ↔ ∃ 𝑛 ∈ ( 0 ... ( 3 − 1 ) ) 𝐴 = ( ( 1 ↑𝑐 ( 1 / 3 ) ) · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) ) ) |
| 87 |
26 86
|
bitr4d |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 3 ) = 1 ↔ 𝐴 ∈ 𝑅 ) ) |
| 88 |
87
|
pm5.32i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐴 ↑ 3 ) = 1 ) ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ 𝑅 ) ) |
| 89 |
23 88
|
bitr4i |
⊢ ( 𝐴 ∈ 𝑅 ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ↑ 3 ) = 1 ) ) |