Step |
Hyp |
Ref |
Expression |
1 |
|
1cubr.r |
⊢ 𝑅 = { 1 , ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) , ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) } |
2 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
3 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
4 |
|
ax-icn |
⊢ i ∈ ℂ |
5 |
|
3cn |
⊢ 3 ∈ ℂ |
6 |
|
sqrtcl |
⊢ ( 3 ∈ ℂ → ( √ ‘ 3 ) ∈ ℂ ) |
7 |
5 6
|
ax-mp |
⊢ ( √ ‘ 3 ) ∈ ℂ |
8 |
4 7
|
mulcli |
⊢ ( i · ( √ ‘ 3 ) ) ∈ ℂ |
9 |
3 8
|
addcli |
⊢ ( - 1 + ( i · ( √ ‘ 3 ) ) ) ∈ ℂ |
10 |
|
halfcl |
⊢ ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) ∈ ℂ → ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) ∈ ℂ ) |
11 |
9 10
|
ax-mp |
⊢ ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) ∈ ℂ |
12 |
3 8
|
subcli |
⊢ ( - 1 − ( i · ( √ ‘ 3 ) ) ) ∈ ℂ |
13 |
|
halfcl |
⊢ ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) ∈ ℂ → ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) ∈ ℂ ) |
14 |
12 13
|
ax-mp |
⊢ ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) ∈ ℂ |
15 |
2 11 14
|
3pm3.2i |
⊢ ( 1 ∈ ℂ ∧ ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) ∈ ℂ ∧ ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) ∈ ℂ ) |
16 |
2
|
elexi |
⊢ 1 ∈ V |
17 |
|
ovex |
⊢ ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) ∈ V |
18 |
|
ovex |
⊢ ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) ∈ V |
19 |
16 17 18
|
tpss |
⊢ ( ( 1 ∈ ℂ ∧ ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) ∈ ℂ ∧ ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) ∈ ℂ ) ↔ { 1 , ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) , ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) } ⊆ ℂ ) |
20 |
15 19
|
mpbi |
⊢ { 1 , ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) , ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) } ⊆ ℂ |
21 |
1 20
|
eqsstri |
⊢ 𝑅 ⊆ ℂ |
22 |
21
|
sseli |
⊢ ( 𝐴 ∈ 𝑅 → 𝐴 ∈ ℂ ) |
23 |
22
|
pm4.71ri |
⊢ ( 𝐴 ∈ 𝑅 ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ 𝑅 ) ) |
24 |
|
3nn |
⊢ 3 ∈ ℕ |
25 |
|
cxpeq |
⊢ ( ( 𝐴 ∈ ℂ ∧ 3 ∈ ℕ ∧ 1 ∈ ℂ ) → ( ( 𝐴 ↑ 3 ) = 1 ↔ ∃ 𝑛 ∈ ( 0 ... ( 3 − 1 ) ) 𝐴 = ( ( 1 ↑𝑐 ( 1 / 3 ) ) · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) ) ) |
26 |
24 2 25
|
mp3an23 |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 3 ) = 1 ↔ ∃ 𝑛 ∈ ( 0 ... ( 3 − 1 ) ) 𝐴 = ( ( 1 ↑𝑐 ( 1 / 3 ) ) · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) ) ) |
27 |
|
eltpg |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ { 1 , ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) , ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) } ↔ ( 𝐴 = 1 ∨ 𝐴 = ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) ∨ 𝐴 = ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) ) ) ) |
28 |
1
|
eleq2i |
⊢ ( 𝐴 ∈ 𝑅 ↔ 𝐴 ∈ { 1 , ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) , ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) } ) |
29 |
|
3m1e2 |
⊢ ( 3 − 1 ) = 2 |
30 |
|
2cn |
⊢ 2 ∈ ℂ |
31 |
30
|
addid2i |
⊢ ( 0 + 2 ) = 2 |
32 |
29 31
|
eqtr4i |
⊢ ( 3 − 1 ) = ( 0 + 2 ) |
33 |
32
|
oveq2i |
⊢ ( 0 ... ( 3 − 1 ) ) = ( 0 ... ( 0 + 2 ) ) |
34 |
|
0z |
⊢ 0 ∈ ℤ |
35 |
|
fztp |
⊢ ( 0 ∈ ℤ → ( 0 ... ( 0 + 2 ) ) = { 0 , ( 0 + 1 ) , ( 0 + 2 ) } ) |
36 |
34 35
|
ax-mp |
⊢ ( 0 ... ( 0 + 2 ) ) = { 0 , ( 0 + 1 ) , ( 0 + 2 ) } |
37 |
33 36
|
eqtri |
⊢ ( 0 ... ( 3 − 1 ) ) = { 0 , ( 0 + 1 ) , ( 0 + 2 ) } |
38 |
37
|
rexeqi |
⊢ ( ∃ 𝑛 ∈ ( 0 ... ( 3 − 1 ) ) 𝐴 = ( ( 1 ↑𝑐 ( 1 / 3 ) ) · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) ↔ ∃ 𝑛 ∈ { 0 , ( 0 + 1 ) , ( 0 + 2 ) } 𝐴 = ( ( 1 ↑𝑐 ( 1 / 3 ) ) · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) ) |
39 |
|
3ne0 |
⊢ 3 ≠ 0 |
40 |
5 39
|
reccli |
⊢ ( 1 / 3 ) ∈ ℂ |
41 |
|
1cxp |
⊢ ( ( 1 / 3 ) ∈ ℂ → ( 1 ↑𝑐 ( 1 / 3 ) ) = 1 ) |
42 |
40 41
|
ax-mp |
⊢ ( 1 ↑𝑐 ( 1 / 3 ) ) = 1 |
43 |
42
|
oveq1i |
⊢ ( ( 1 ↑𝑐 ( 1 / 3 ) ) · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) = ( 1 · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) |
44 |
43
|
eqeq2i |
⊢ ( 𝐴 = ( ( 1 ↑𝑐 ( 1 / 3 ) ) · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) ↔ 𝐴 = ( 1 · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) ) |
45 |
44
|
rexbii |
⊢ ( ∃ 𝑛 ∈ { 0 , ( 0 + 1 ) , ( 0 + 2 ) } 𝐴 = ( ( 1 ↑𝑐 ( 1 / 3 ) ) · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) ↔ ∃ 𝑛 ∈ { 0 , ( 0 + 1 ) , ( 0 + 2 ) } 𝐴 = ( 1 · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) ) |
46 |
34
|
elexi |
⊢ 0 ∈ V |
47 |
|
ovex |
⊢ ( 0 + 1 ) ∈ V |
48 |
|
ovex |
⊢ ( 0 + 2 ) ∈ V |
49 |
|
oveq2 |
⊢ ( 𝑛 = 0 → ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) = ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 0 ) ) |
50 |
30 5 39
|
divcli |
⊢ ( 2 / 3 ) ∈ ℂ |
51 |
|
cxpcl |
⊢ ( ( - 1 ∈ ℂ ∧ ( 2 / 3 ) ∈ ℂ ) → ( - 1 ↑𝑐 ( 2 / 3 ) ) ∈ ℂ ) |
52 |
3 50 51
|
mp2an |
⊢ ( - 1 ↑𝑐 ( 2 / 3 ) ) ∈ ℂ |
53 |
|
exp0 |
⊢ ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ∈ ℂ → ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 0 ) = 1 ) |
54 |
52 53
|
ax-mp |
⊢ ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 0 ) = 1 |
55 |
49 54
|
eqtrdi |
⊢ ( 𝑛 = 0 → ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) = 1 ) |
56 |
55
|
oveq2d |
⊢ ( 𝑛 = 0 → ( 1 · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) = ( 1 · 1 ) ) |
57 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
58 |
56 57
|
eqtrdi |
⊢ ( 𝑛 = 0 → ( 1 · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) = 1 ) |
59 |
58
|
eqeq2d |
⊢ ( 𝑛 = 0 → ( 𝐴 = ( 1 · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) ↔ 𝐴 = 1 ) ) |
60 |
|
id |
⊢ ( 𝑛 = ( 0 + 1 ) → 𝑛 = ( 0 + 1 ) ) |
61 |
2
|
addid2i |
⊢ ( 0 + 1 ) = 1 |
62 |
60 61
|
eqtrdi |
⊢ ( 𝑛 = ( 0 + 1 ) → 𝑛 = 1 ) |
63 |
62
|
oveq2d |
⊢ ( 𝑛 = ( 0 + 1 ) → ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) = ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 1 ) ) |
64 |
|
exp1 |
⊢ ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ∈ ℂ → ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 1 ) = ( - 1 ↑𝑐 ( 2 / 3 ) ) ) |
65 |
52 64
|
ax-mp |
⊢ ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 1 ) = ( - 1 ↑𝑐 ( 2 / 3 ) ) |
66 |
63 65
|
eqtrdi |
⊢ ( 𝑛 = ( 0 + 1 ) → ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) = ( - 1 ↑𝑐 ( 2 / 3 ) ) ) |
67 |
66
|
oveq2d |
⊢ ( 𝑛 = ( 0 + 1 ) → ( 1 · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) = ( 1 · ( - 1 ↑𝑐 ( 2 / 3 ) ) ) ) |
68 |
52
|
mulid2i |
⊢ ( 1 · ( - 1 ↑𝑐 ( 2 / 3 ) ) ) = ( - 1 ↑𝑐 ( 2 / 3 ) ) |
69 |
|
1cubrlem |
⊢ ( ( - 1 ↑𝑐 ( 2 / 3 ) ) = ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) ∧ ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 2 ) = ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) ) |
70 |
69
|
simpli |
⊢ ( - 1 ↑𝑐 ( 2 / 3 ) ) = ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) |
71 |
68 70
|
eqtri |
⊢ ( 1 · ( - 1 ↑𝑐 ( 2 / 3 ) ) ) = ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) |
72 |
67 71
|
eqtrdi |
⊢ ( 𝑛 = ( 0 + 1 ) → ( 1 · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) = ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) ) |
73 |
72
|
eqeq2d |
⊢ ( 𝑛 = ( 0 + 1 ) → ( 𝐴 = ( 1 · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) ↔ 𝐴 = ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) ) ) |
74 |
|
id |
⊢ ( 𝑛 = ( 0 + 2 ) → 𝑛 = ( 0 + 2 ) ) |
75 |
74 31
|
eqtrdi |
⊢ ( 𝑛 = ( 0 + 2 ) → 𝑛 = 2 ) |
76 |
75
|
oveq2d |
⊢ ( 𝑛 = ( 0 + 2 ) → ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) = ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 2 ) ) |
77 |
76
|
oveq2d |
⊢ ( 𝑛 = ( 0 + 2 ) → ( 1 · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) = ( 1 · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 2 ) ) ) |
78 |
52
|
sqcli |
⊢ ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 2 ) ∈ ℂ |
79 |
78
|
mulid2i |
⊢ ( 1 · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 2 ) ) = ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 2 ) |
80 |
69
|
simpri |
⊢ ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 2 ) = ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) |
81 |
79 80
|
eqtri |
⊢ ( 1 · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 2 ) ) = ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) |
82 |
77 81
|
eqtrdi |
⊢ ( 𝑛 = ( 0 + 2 ) → ( 1 · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) = ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) ) |
83 |
82
|
eqeq2d |
⊢ ( 𝑛 = ( 0 + 2 ) → ( 𝐴 = ( 1 · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) ↔ 𝐴 = ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) ) ) |
84 |
46 47 48 59 73 83
|
rextp |
⊢ ( ∃ 𝑛 ∈ { 0 , ( 0 + 1 ) , ( 0 + 2 ) } 𝐴 = ( 1 · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) ↔ ( 𝐴 = 1 ∨ 𝐴 = ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) ∨ 𝐴 = ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) ) ) |
85 |
38 45 84
|
3bitri |
⊢ ( ∃ 𝑛 ∈ ( 0 ... ( 3 − 1 ) ) 𝐴 = ( ( 1 ↑𝑐 ( 1 / 3 ) ) · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) ↔ ( 𝐴 = 1 ∨ 𝐴 = ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) ∨ 𝐴 = ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) ) ) |
86 |
27 28 85
|
3bitr4g |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ 𝑅 ↔ ∃ 𝑛 ∈ ( 0 ... ( 3 − 1 ) ) 𝐴 = ( ( 1 ↑𝑐 ( 1 / 3 ) ) · ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 𝑛 ) ) ) ) |
87 |
26 86
|
bitr4d |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 3 ) = 1 ↔ 𝐴 ∈ 𝑅 ) ) |
88 |
87
|
pm5.32i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐴 ↑ 3 ) = 1 ) ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ 𝑅 ) ) |
89 |
23 88
|
bitr4i |
⊢ ( 𝐴 ∈ 𝑅 ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ↑ 3 ) = 1 ) ) |