Metamath Proof Explorer


Theorem quart

Description: The quartic equation, writing out all roots using square and cube root functions so that only direct substitutions remain, and we can actually claim to have a "quartic equation". Naturally, this theorem is ridiculously long (see quartfull ) if all the substitutions are performed. This is Metamath 100 proof #46. (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses quart.a φA
quart.b φB
quart.c φC
quart.d φD
quart.x φX
quart.e φE=A4
quart.p φP=B38A2
quart.q φQ=C-AB2+A38
quart.r φR=DCA4+A2B16-3256A4
quart.u φU=P2+12R
quart.v φV=2P3-27Q2+72PR
quart.w φW=V24U3
quart.s φS=M2
quart.m φM=2P+T+UT3
quart.t φT=V+W213
quart.t0 φT0
quart.m0 φM0
quart.i φI=S2-P2+Q4S
quart.j φJ=S2-P2-Q4S
Assertion quart φX4+AX3+BX2+CX+D=0X=E-S+IX=E-S-IX=E+S+JX=E+S-J

Proof

Step Hyp Ref Expression
1 quart.a φA
2 quart.b φB
3 quart.c φC
4 quart.d φD
5 quart.x φX
6 quart.e φE=A4
7 quart.p φP=B38A2
8 quart.q φQ=C-AB2+A38
9 quart.r φR=DCA4+A2B16-3256A4
10 quart.u φU=P2+12R
11 quart.v φV=2P3-27Q2+72PR
12 quart.w φW=V24U3
13 quart.s φS=M2
14 quart.m φM=2P+T+UT3
15 quart.t φT=V+W213
16 quart.t0 φT0
17 quart.m0 φM0
18 quart.i φI=S2-P2+Q4S
19 quart.j φJ=S2-P2-Q4S
20 6 oveq2d φXE=XA4
21 4cn 4
22 21 a1i φ4
23 4ne0 40
24 23 a1i φ40
25 1 22 24 divcld φA4
26 5 25 subnegd φXA4=X+A4
27 20 26 eqtrd φXE=X+A4
28 1 2 3 4 7 8 9 5 27 quart1 φX4+AX3+BX2+CX+D=XE4+PXE2+QXE+R
29 28 eqeq1d φX4+AX3+BX2+CX+D=0XE4+PXE2+QXE+R=0
30 1 2 3 4 7 8 9 quart1cl φPQR
31 30 simp1d φP
32 30 simp2d φQ
33 25 negcld φA4
34 6 33 eqeltrd φE
35 5 34 subcld φXE
36 1 2 3 4 1 6 7 8 9 10 11 12 13 14 15 16 quartlem3 φSMT
37 36 simp1d φS
38 13 oveq2d φ2S=2M2
39 36 simp2d φM
40 39 sqrtcld φM
41 2cnd φ2
42 2ne0 20
43 42 a1i φ20
44 40 41 43 divcan2d φ2M2=M
45 38 44 eqtrd φ2S=M
46 45 oveq1d φ2S2=M2
47 39 sqsqrtd φM2=M
48 46 47 eqtr2d φM=2S2
49 1 2 3 4 1 6 7 8 9 10 11 12 13 14 15 16 17 18 19 quartlem4 φS0IJ
50 49 simp2d φI
51 18 oveq1d φI2=S2-P2+Q4S2
52 37 sqcld φS2
53 52 negcld φS2
54 31 halfcld φP2
55 53 54 subcld φ-S2-P2
56 32 22 24 divcld φQ4
57 49 simp1d φS0
58 56 37 57 divcld φQ4S
59 55 58 addcld φS2-P2+Q4S
60 59 sqsqrtd φS2-P2+Q4S2=S2-P2+Q4S
61 51 60 eqtrd φI2=S2-P2+Q4S
62 30 simp3d φR
63 1cnd φ1
64 3z 3
65 1exp 313=1
66 64 65 mp1i φ13=1
67 36 simp3d φT
68 67 mullidd φ1T=T
69 68 oveq2d φ2P+1T=2P+T
70 68 oveq2d φU1T=UT
71 69 70 oveq12d φ2P+1T+U1T=2P+T+UT
72 71 oveq1d φ2P+1T+U1T3=2P+T+UT3
73 72 negeqd φ2P+1T+U1T3=2P+T+UT3
74 14 73 eqtr4d φM=2P+1T+U1T3
75 oveq1 x=1x3=13
76 75 eqeq1d x=1x3=113=1
77 oveq1 x=1xT=1T
78 77 oveq2d x=12P+xT=2P+1T
79 77 oveq2d x=1UxT=U1T
80 78 79 oveq12d x=12P+xT+UxT=2P+1T+U1T
81 80 oveq1d x=12P+xT+UxT3=2P+1T+U1T3
82 81 negeqd x=12P+xT+UxT3=2P+1T+U1T3
83 82 eqeq2d x=1M=2P+xT+UxT3M=2P+1T+U1T3
84 76 83 anbi12d x=1x3=1M=2P+xT+UxT313=1M=2P+1T+U1T3
85 84 rspcev 113=1M=2P+1T+U1T3xx3=1M=2P+xT+UxT3
86 63 66 74 85 syl12anc φxx3=1M=2P+xT+UxT3
87 2cn 2
88 mulcl 2P2P
89 87 31 88 sylancr φ2P
90 31 sqcld φP2
91 mulcl 4R4R
92 21 62 91 sylancr φ4R
93 90 92 subcld φP24R
94 32 sqcld φQ2
95 94 negcld φQ2
96 15 oveq1d φT3=V+W2133
97 1 2 3 4 1 6 7 8 9 10 11 12 quartlem2 φUVW
98 97 simp2d φV
99 97 simp3d φW
100 98 99 addcld φV+W
101 100 halfcld φV+W2
102 3nn 3
103 cxproot V+W23V+W2133=V+W2
104 101 102 103 sylancl φV+W2133=V+W2
105 96 104 eqtrd φT3=V+W2
106 12 oveq1d φW2=V24U32
107 98 sqcld φV2
108 97 simp1d φU
109 3nn0 30
110 expcl U30U3
111 108 109 110 sylancl φU3
112 mulcl 4U34U3
113 21 111 112 sylancr φ4U3
114 107 113 subcld φV24U3
115 114 sqsqrtd φV24U32=V24U3
116 106 115 eqtrd φW2=V24U3
117 31 32 62 10 11 quartlem1 φU=2P23P24RV=22P3-92PP24R+27Q2
118 117 simpld φU=2P23P24R
119 117 simprd φV=22P3-92PP24R+27Q2
120 89 93 95 39 67 105 99 116 118 119 16 mcubic φM3+2PM2+P24R M+Q2=0xx3=1M=2P+xT+UxT3
121 86 120 mpbird φM3+2PM2+P24R M+Q2=0
122 49 simp3d φJ
123 19 oveq1d φJ2=S2-P2-Q4S2
124 55 58 subcld φS2-P2-Q4S
125 124 sqsqrtd φS2-P2-Q4S2=S2-P2-Q4S
126 123 125 eqtrd φJ2=S2-P2-Q4S
127 31 32 35 37 48 17 50 61 62 121 122 126 dquart φXE4+PXE2+QXE+R=0XE=-S+IXE=-S-IXE=S+JXE=SJ
128 37 negcld φS
129 128 50 addcld φ-S+I
130 5 34 129 subaddd φXE=-S+IE+S+I=X
131 34 37 negsubd φE+S=ES
132 131 oveq1d φE+S+I=E-S+I
133 34 128 50 addassd φE+S+I=E+S+I
134 132 133 eqtr3d φE-S+I=E+S+I
135 134 eqeq1d φE-S+I=XE+S+I=X
136 130 135 bitr4d φXE=-S+IE-S+I=X
137 eqcom E-S+I=XX=E-S+I
138 136 137 bitrdi φXE=-S+IX=E-S+I
139 128 50 subcld φ-S-I
140 5 34 139 subaddd φXE=-S-IE+S-I=X
141 131 oveq1d φE+S-I=E-S-I
142 34 128 50 addsubassd φE+S-I=E+S-I
143 141 142 eqtr3d φE-S-I=E+S-I
144 143 eqeq1d φE-S-I=XE+S-I=X
145 140 144 bitr4d φXE=-S-IE-S-I=X
146 eqcom E-S-I=XX=E-S-I
147 145 146 bitrdi φXE=-S-IX=E-S-I
148 138 147 orbi12d φXE=-S+IXE=-S-IX=E-S+IX=E-S-I
149 37 122 addcld φS+J
150 5 34 149 subaddd φXE=S+JE+S+J=X
151 34 37 122 addassd φE+S+J=E+S+J
152 151 eqeq1d φE+S+J=XE+S+J=X
153 150 152 bitr4d φXE=S+JE+S+J=X
154 eqcom E+S+J=XX=E+S+J
155 153 154 bitrdi φXE=S+JX=E+S+J
156 37 122 subcld φSJ
157 5 34 156 subaddd φXE=SJE+S-J=X
158 34 37 122 addsubassd φE+S-J=E+S-J
159 158 eqeq1d φE+S-J=XE+S-J=X
160 157 159 bitr4d φXE=SJE+S-J=X
161 eqcom E+S-J=XX=E+S-J
162 160 161 bitrdi φXE=SJX=E+S-J
163 155 162 orbi12d φXE=S+JXE=SJX=E+S+JX=E+S-J
164 148 163 orbi12d φXE=-S+IXE=-S-IXE=S+JXE=SJX=E-S+IX=E-S-IX=E+S+JX=E+S-J
165 29 127 164 3bitrd φX4+AX3+BX2+CX+D=0X=E-S+IX=E-S-IX=E+S+JX=E+S-J