| Step | Hyp | Ref | Expression | 
						
							| 1 |  | quart1.a |  |-  ( ph -> A e. CC ) | 
						
							| 2 |  | quart1.b |  |-  ( ph -> B e. CC ) | 
						
							| 3 |  | quart1.c |  |-  ( ph -> C e. CC ) | 
						
							| 4 |  | quart1.d |  |-  ( ph -> D e. CC ) | 
						
							| 5 |  | quart1.p |  |-  ( ph -> P = ( B - ( ( 3 / 8 ) x. ( A ^ 2 ) ) ) ) | 
						
							| 6 |  | quart1.q |  |-  ( ph -> Q = ( ( C - ( ( A x. B ) / 2 ) ) + ( ( A ^ 3 ) / 8 ) ) ) | 
						
							| 7 |  | quart1.r |  |-  ( ph -> R = ( ( D - ( ( C x. A ) / 4 ) ) + ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) - ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) ) ) | 
						
							| 8 |  | quart1.x |  |-  ( ph -> X e. CC ) | 
						
							| 9 |  | quart1.y |  |-  ( ph -> Y = ( X + ( A / 4 ) ) ) | 
						
							| 10 | 9 | oveq1d |  |-  ( ph -> ( Y ^ 4 ) = ( ( X + ( A / 4 ) ) ^ 4 ) ) | 
						
							| 11 |  | 4cn |  |-  4 e. CC | 
						
							| 12 | 11 | a1i |  |-  ( ph -> 4 e. CC ) | 
						
							| 13 |  | 4ne0 |  |-  4 =/= 0 | 
						
							| 14 | 13 | a1i |  |-  ( ph -> 4 =/= 0 ) | 
						
							| 15 | 1 12 14 | divcld |  |-  ( ph -> ( A / 4 ) e. CC ) | 
						
							| 16 |  | binom4 |  |-  ( ( X e. CC /\ ( A / 4 ) e. CC ) -> ( ( X + ( A / 4 ) ) ^ 4 ) = ( ( ( X ^ 4 ) + ( 4 x. ( ( X ^ 3 ) x. ( A / 4 ) ) ) ) + ( ( 6 x. ( ( X ^ 2 ) x. ( ( A / 4 ) ^ 2 ) ) ) + ( ( 4 x. ( X x. ( ( A / 4 ) ^ 3 ) ) ) + ( ( A / 4 ) ^ 4 ) ) ) ) ) | 
						
							| 17 | 8 15 16 | syl2anc |  |-  ( ph -> ( ( X + ( A / 4 ) ) ^ 4 ) = ( ( ( X ^ 4 ) + ( 4 x. ( ( X ^ 3 ) x. ( A / 4 ) ) ) ) + ( ( 6 x. ( ( X ^ 2 ) x. ( ( A / 4 ) ^ 2 ) ) ) + ( ( 4 x. ( X x. ( ( A / 4 ) ^ 3 ) ) ) + ( ( A / 4 ) ^ 4 ) ) ) ) ) | 
						
							| 18 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 19 |  | expcl |  |-  ( ( X e. CC /\ 3 e. NN0 ) -> ( X ^ 3 ) e. CC ) | 
						
							| 20 | 8 18 19 | sylancl |  |-  ( ph -> ( X ^ 3 ) e. CC ) | 
						
							| 21 | 12 20 15 | mul12d |  |-  ( ph -> ( 4 x. ( ( X ^ 3 ) x. ( A / 4 ) ) ) = ( ( X ^ 3 ) x. ( 4 x. ( A / 4 ) ) ) ) | 
						
							| 22 | 1 12 14 | divcan2d |  |-  ( ph -> ( 4 x. ( A / 4 ) ) = A ) | 
						
							| 23 | 22 | oveq2d |  |-  ( ph -> ( ( X ^ 3 ) x. ( 4 x. ( A / 4 ) ) ) = ( ( X ^ 3 ) x. A ) ) | 
						
							| 24 | 20 1 | mulcomd |  |-  ( ph -> ( ( X ^ 3 ) x. A ) = ( A x. ( X ^ 3 ) ) ) | 
						
							| 25 | 21 23 24 | 3eqtrd |  |-  ( ph -> ( 4 x. ( ( X ^ 3 ) x. ( A / 4 ) ) ) = ( A x. ( X ^ 3 ) ) ) | 
						
							| 26 | 25 | oveq2d |  |-  ( ph -> ( ( X ^ 4 ) + ( 4 x. ( ( X ^ 3 ) x. ( A / 4 ) ) ) ) = ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) ) | 
						
							| 27 |  | 6nn |  |-  6 e. NN | 
						
							| 28 | 27 | nncni |  |-  6 e. CC | 
						
							| 29 | 28 | a1i |  |-  ( ph -> 6 e. CC ) | 
						
							| 30 | 15 | sqcld |  |-  ( ph -> ( ( A / 4 ) ^ 2 ) e. CC ) | 
						
							| 31 | 8 | sqcld |  |-  ( ph -> ( X ^ 2 ) e. CC ) | 
						
							| 32 | 29 30 31 | mulassd |  |-  ( ph -> ( ( 6 x. ( ( A / 4 ) ^ 2 ) ) x. ( X ^ 2 ) ) = ( 6 x. ( ( ( A / 4 ) ^ 2 ) x. ( X ^ 2 ) ) ) ) | 
						
							| 33 |  | 3cn |  |-  3 e. CC | 
						
							| 34 |  | 2cn |  |-  2 e. CC | 
						
							| 35 |  | 3t2e6 |  |-  ( 3 x. 2 ) = 6 | 
						
							| 36 | 33 34 35 | mulcomli |  |-  ( 2 x. 3 ) = 6 | 
						
							| 37 |  | 8cn |  |-  8 e. CC | 
						
							| 38 |  | 8t2e16 |  |-  ( 8 x. 2 ) = ; 1 6 | 
						
							| 39 | 37 34 38 | mulcomli |  |-  ( 2 x. 8 ) = ; 1 6 | 
						
							| 40 | 36 39 | oveq12i |  |-  ( ( 2 x. 3 ) / ( 2 x. 8 ) ) = ( 6 / ; 1 6 ) | 
						
							| 41 |  | 8nn |  |-  8 e. NN | 
						
							| 42 | 41 | nnne0i |  |-  8 =/= 0 | 
						
							| 43 | 37 42 | pm3.2i |  |-  ( 8 e. CC /\ 8 =/= 0 ) | 
						
							| 44 |  | 2cnne0 |  |-  ( 2 e. CC /\ 2 =/= 0 ) | 
						
							| 45 |  | divcan5 |  |-  ( ( 3 e. CC /\ ( 8 e. CC /\ 8 =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( 2 x. 3 ) / ( 2 x. 8 ) ) = ( 3 / 8 ) ) | 
						
							| 46 | 33 43 44 45 | mp3an |  |-  ( ( 2 x. 3 ) / ( 2 x. 8 ) ) = ( 3 / 8 ) | 
						
							| 47 | 40 46 | eqtr3i |  |-  ( 6 / ; 1 6 ) = ( 3 / 8 ) | 
						
							| 48 | 47 | oveq2i |  |-  ( ( A ^ 2 ) x. ( 6 / ; 1 6 ) ) = ( ( A ^ 2 ) x. ( 3 / 8 ) ) | 
						
							| 49 | 1 | sqcld |  |-  ( ph -> ( A ^ 2 ) e. CC ) | 
						
							| 50 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 51 | 50 27 | decnncl |  |-  ; 1 6 e. NN | 
						
							| 52 | 51 | nncni |  |-  ; 1 6 e. CC | 
						
							| 53 | 52 | a1i |  |-  ( ph -> ; 1 6 e. CC ) | 
						
							| 54 | 51 | nnne0i |  |-  ; 1 6 =/= 0 | 
						
							| 55 | 54 | a1i |  |-  ( ph -> ; 1 6 =/= 0 ) | 
						
							| 56 | 49 29 53 55 | div12d |  |-  ( ph -> ( ( A ^ 2 ) x. ( 6 / ; 1 6 ) ) = ( 6 x. ( ( A ^ 2 ) / ; 1 6 ) ) ) | 
						
							| 57 | 48 56 | eqtr3id |  |-  ( ph -> ( ( A ^ 2 ) x. ( 3 / 8 ) ) = ( 6 x. ( ( A ^ 2 ) / ; 1 6 ) ) ) | 
						
							| 58 | 33 37 42 | divcli |  |-  ( 3 / 8 ) e. CC | 
						
							| 59 |  | mulcom |  |-  ( ( ( 3 / 8 ) e. CC /\ ( A ^ 2 ) e. CC ) -> ( ( 3 / 8 ) x. ( A ^ 2 ) ) = ( ( A ^ 2 ) x. ( 3 / 8 ) ) ) | 
						
							| 60 | 58 49 59 | sylancr |  |-  ( ph -> ( ( 3 / 8 ) x. ( A ^ 2 ) ) = ( ( A ^ 2 ) x. ( 3 / 8 ) ) ) | 
						
							| 61 | 1 12 14 | sqdivd |  |-  ( ph -> ( ( A / 4 ) ^ 2 ) = ( ( A ^ 2 ) / ( 4 ^ 2 ) ) ) | 
						
							| 62 | 11 | sqvali |  |-  ( 4 ^ 2 ) = ( 4 x. 4 ) | 
						
							| 63 |  | 4t4e16 |  |-  ( 4 x. 4 ) = ; 1 6 | 
						
							| 64 | 62 63 | eqtri |  |-  ( 4 ^ 2 ) = ; 1 6 | 
						
							| 65 | 64 | oveq2i |  |-  ( ( A ^ 2 ) / ( 4 ^ 2 ) ) = ( ( A ^ 2 ) / ; 1 6 ) | 
						
							| 66 | 61 65 | eqtrdi |  |-  ( ph -> ( ( A / 4 ) ^ 2 ) = ( ( A ^ 2 ) / ; 1 6 ) ) | 
						
							| 67 | 66 | oveq2d |  |-  ( ph -> ( 6 x. ( ( A / 4 ) ^ 2 ) ) = ( 6 x. ( ( A ^ 2 ) / ; 1 6 ) ) ) | 
						
							| 68 | 57 60 67 | 3eqtr4d |  |-  ( ph -> ( ( 3 / 8 ) x. ( A ^ 2 ) ) = ( 6 x. ( ( A / 4 ) ^ 2 ) ) ) | 
						
							| 69 | 68 | oveq1d |  |-  ( ph -> ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) = ( ( 6 x. ( ( A / 4 ) ^ 2 ) ) x. ( X ^ 2 ) ) ) | 
						
							| 70 | 31 30 | mulcomd |  |-  ( ph -> ( ( X ^ 2 ) x. ( ( A / 4 ) ^ 2 ) ) = ( ( ( A / 4 ) ^ 2 ) x. ( X ^ 2 ) ) ) | 
						
							| 71 | 70 | oveq2d |  |-  ( ph -> ( 6 x. ( ( X ^ 2 ) x. ( ( A / 4 ) ^ 2 ) ) ) = ( 6 x. ( ( ( A / 4 ) ^ 2 ) x. ( X ^ 2 ) ) ) ) | 
						
							| 72 | 32 69 71 | 3eqtr4rd |  |-  ( ph -> ( 6 x. ( ( X ^ 2 ) x. ( ( A / 4 ) ^ 2 ) ) ) = ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) ) | 
						
							| 73 |  | expcl |  |-  ( ( ( A / 4 ) e. CC /\ 3 e. NN0 ) -> ( ( A / 4 ) ^ 3 ) e. CC ) | 
						
							| 74 | 15 18 73 | sylancl |  |-  ( ph -> ( ( A / 4 ) ^ 3 ) e. CC ) | 
						
							| 75 | 12 8 74 | mul12d |  |-  ( ph -> ( 4 x. ( X x. ( ( A / 4 ) ^ 3 ) ) ) = ( X x. ( 4 x. ( ( A / 4 ) ^ 3 ) ) ) ) | 
						
							| 76 | 12 74 | mulcld |  |-  ( ph -> ( 4 x. ( ( A / 4 ) ^ 3 ) ) e. CC ) | 
						
							| 77 | 8 76 | mulcomd |  |-  ( ph -> ( X x. ( 4 x. ( ( A / 4 ) ^ 3 ) ) ) = ( ( 4 x. ( ( A / 4 ) ^ 3 ) ) x. X ) ) | 
						
							| 78 |  | df-3 |  |-  3 = ( 2 + 1 ) | 
						
							| 79 | 78 | oveq2i |  |-  ( 4 ^ 3 ) = ( 4 ^ ( 2 + 1 ) ) | 
						
							| 80 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 81 |  | expp1 |  |-  ( ( 4 e. CC /\ 2 e. NN0 ) -> ( 4 ^ ( 2 + 1 ) ) = ( ( 4 ^ 2 ) x. 4 ) ) | 
						
							| 82 | 11 80 81 | mp2an |  |-  ( 4 ^ ( 2 + 1 ) ) = ( ( 4 ^ 2 ) x. 4 ) | 
						
							| 83 | 64 | oveq1i |  |-  ( ( 4 ^ 2 ) x. 4 ) = ( ; 1 6 x. 4 ) | 
						
							| 84 | 79 82 83 | 3eqtri |  |-  ( 4 ^ 3 ) = ( ; 1 6 x. 4 ) | 
						
							| 85 | 84 | oveq2i |  |-  ( ( A ^ 3 ) / ( 4 ^ 3 ) ) = ( ( A ^ 3 ) / ( ; 1 6 x. 4 ) ) | 
						
							| 86 | 18 | a1i |  |-  ( ph -> 3 e. NN0 ) | 
						
							| 87 | 1 12 14 86 | expdivd |  |-  ( ph -> ( ( A / 4 ) ^ 3 ) = ( ( A ^ 3 ) / ( 4 ^ 3 ) ) ) | 
						
							| 88 |  | expcl |  |-  ( ( A e. CC /\ 3 e. NN0 ) -> ( A ^ 3 ) e. CC ) | 
						
							| 89 | 1 18 88 | sylancl |  |-  ( ph -> ( A ^ 3 ) e. CC ) | 
						
							| 90 | 89 53 12 55 14 | divdiv1d |  |-  ( ph -> ( ( ( A ^ 3 ) / ; 1 6 ) / 4 ) = ( ( A ^ 3 ) / ( ; 1 6 x. 4 ) ) ) | 
						
							| 91 | 85 87 90 | 3eqtr4a |  |-  ( ph -> ( ( A / 4 ) ^ 3 ) = ( ( ( A ^ 3 ) / ; 1 6 ) / 4 ) ) | 
						
							| 92 | 91 | oveq2d |  |-  ( ph -> ( 4 x. ( ( A / 4 ) ^ 3 ) ) = ( 4 x. ( ( ( A ^ 3 ) / ; 1 6 ) / 4 ) ) ) | 
						
							| 93 | 38 | oveq2i |  |-  ( ( A ^ 3 ) / ( 8 x. 2 ) ) = ( ( A ^ 3 ) / ; 1 6 ) | 
						
							| 94 | 37 | a1i |  |-  ( ph -> 8 e. CC ) | 
						
							| 95 | 34 | a1i |  |-  ( ph -> 2 e. CC ) | 
						
							| 96 | 42 | a1i |  |-  ( ph -> 8 =/= 0 ) | 
						
							| 97 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 98 | 97 | a1i |  |-  ( ph -> 2 =/= 0 ) | 
						
							| 99 | 89 94 95 96 98 | divdiv1d |  |-  ( ph -> ( ( ( A ^ 3 ) / 8 ) / 2 ) = ( ( A ^ 3 ) / ( 8 x. 2 ) ) ) | 
						
							| 100 | 89 53 55 | divcld |  |-  ( ph -> ( ( A ^ 3 ) / ; 1 6 ) e. CC ) | 
						
							| 101 | 100 12 14 | divcan2d |  |-  ( ph -> ( 4 x. ( ( ( A ^ 3 ) / ; 1 6 ) / 4 ) ) = ( ( A ^ 3 ) / ; 1 6 ) ) | 
						
							| 102 | 93 99 101 | 3eqtr4a |  |-  ( ph -> ( ( ( A ^ 3 ) / 8 ) / 2 ) = ( 4 x. ( ( ( A ^ 3 ) / ; 1 6 ) / 4 ) ) ) | 
						
							| 103 | 92 102 | eqtr4d |  |-  ( ph -> ( 4 x. ( ( A / 4 ) ^ 3 ) ) = ( ( ( A ^ 3 ) / 8 ) / 2 ) ) | 
						
							| 104 | 103 | oveq1d |  |-  ( ph -> ( ( 4 x. ( ( A / 4 ) ^ 3 ) ) x. X ) = ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) ) | 
						
							| 105 | 75 77 104 | 3eqtrd |  |-  ( ph -> ( 4 x. ( X x. ( ( A / 4 ) ^ 3 ) ) ) = ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) ) | 
						
							| 106 |  | 4nn0 |  |-  4 e. NN0 | 
						
							| 107 | 106 | a1i |  |-  ( ph -> 4 e. NN0 ) | 
						
							| 108 | 1 12 14 107 | expdivd |  |-  ( ph -> ( ( A / 4 ) ^ 4 ) = ( ( A ^ 4 ) / ( 4 ^ 4 ) ) ) | 
						
							| 109 |  | expmul |  |-  ( ( 2 e. CC /\ 2 e. NN0 /\ 4 e. NN0 ) -> ( 2 ^ ( 2 x. 4 ) ) = ( ( 2 ^ 2 ) ^ 4 ) ) | 
						
							| 110 | 34 80 106 109 | mp3an |  |-  ( 2 ^ ( 2 x. 4 ) ) = ( ( 2 ^ 2 ) ^ 4 ) | 
						
							| 111 |  | 4t2e8 |  |-  ( 4 x. 2 ) = 8 | 
						
							| 112 | 11 34 111 | mulcomli |  |-  ( 2 x. 4 ) = 8 | 
						
							| 113 | 112 | oveq2i |  |-  ( 2 ^ ( 2 x. 4 ) ) = ( 2 ^ 8 ) | 
						
							| 114 | 110 113 | eqtr3i |  |-  ( ( 2 ^ 2 ) ^ 4 ) = ( 2 ^ 8 ) | 
						
							| 115 |  | sq2 |  |-  ( 2 ^ 2 ) = 4 | 
						
							| 116 | 115 | oveq1i |  |-  ( ( 2 ^ 2 ) ^ 4 ) = ( 4 ^ 4 ) | 
						
							| 117 | 114 116 | eqtr3i |  |-  ( 2 ^ 8 ) = ( 4 ^ 4 ) | 
						
							| 118 |  | 2exp8 |  |-  ( 2 ^ 8 ) = ; ; 2 5 6 | 
						
							| 119 | 117 118 | eqtr3i |  |-  ( 4 ^ 4 ) = ; ; 2 5 6 | 
						
							| 120 | 119 | oveq2i |  |-  ( ( A ^ 4 ) / ( 4 ^ 4 ) ) = ( ( A ^ 4 ) / ; ; 2 5 6 ) | 
						
							| 121 | 108 120 | eqtrdi |  |-  ( ph -> ( ( A / 4 ) ^ 4 ) = ( ( A ^ 4 ) / ; ; 2 5 6 ) ) | 
						
							| 122 | 105 121 | oveq12d |  |-  ( ph -> ( ( 4 x. ( X x. ( ( A / 4 ) ^ 3 ) ) ) + ( ( A / 4 ) ^ 4 ) ) = ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) | 
						
							| 123 | 72 122 | oveq12d |  |-  ( ph -> ( ( 6 x. ( ( X ^ 2 ) x. ( ( A / 4 ) ^ 2 ) ) ) + ( ( 4 x. ( X x. ( ( A / 4 ) ^ 3 ) ) ) + ( ( A / 4 ) ^ 4 ) ) ) = ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) ) | 
						
							| 124 | 26 123 | oveq12d |  |-  ( ph -> ( ( ( X ^ 4 ) + ( 4 x. ( ( X ^ 3 ) x. ( A / 4 ) ) ) ) + ( ( 6 x. ( ( X ^ 2 ) x. ( ( A / 4 ) ^ 2 ) ) ) + ( ( 4 x. ( X x. ( ( A / 4 ) ^ 3 ) ) ) + ( ( A / 4 ) ^ 4 ) ) ) ) = ( ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) + ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) ) ) | 
						
							| 125 | 10 17 124 | 3eqtrd |  |-  ( ph -> ( Y ^ 4 ) = ( ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) + ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) ) ) | 
						
							| 126 | 125 | oveq1d |  |-  ( ph -> ( ( Y ^ 4 ) + ( P x. ( Y ^ 2 ) ) ) = ( ( ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) + ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) ) + ( P x. ( Y ^ 2 ) ) ) ) | 
						
							| 127 |  | expcl |  |-  ( ( X e. CC /\ 4 e. NN0 ) -> ( X ^ 4 ) e. CC ) | 
						
							| 128 | 8 106 127 | sylancl |  |-  ( ph -> ( X ^ 4 ) e. CC ) | 
						
							| 129 | 1 20 | mulcld |  |-  ( ph -> ( A x. ( X ^ 3 ) ) e. CC ) | 
						
							| 130 | 128 129 | addcld |  |-  ( ph -> ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) e. CC ) | 
						
							| 131 |  | mulcl |  |-  ( ( ( 3 / 8 ) e. CC /\ ( A ^ 2 ) e. CC ) -> ( ( 3 / 8 ) x. ( A ^ 2 ) ) e. CC ) | 
						
							| 132 | 58 49 131 | sylancr |  |-  ( ph -> ( ( 3 / 8 ) x. ( A ^ 2 ) ) e. CC ) | 
						
							| 133 | 132 31 | mulcld |  |-  ( ph -> ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) e. CC ) | 
						
							| 134 | 89 94 96 | divcld |  |-  ( ph -> ( ( A ^ 3 ) / 8 ) e. CC ) | 
						
							| 135 | 134 | halfcld |  |-  ( ph -> ( ( ( A ^ 3 ) / 8 ) / 2 ) e. CC ) | 
						
							| 136 | 135 8 | mulcld |  |-  ( ph -> ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) e. CC ) | 
						
							| 137 |  | expcl |  |-  ( ( A e. CC /\ 4 e. NN0 ) -> ( A ^ 4 ) e. CC ) | 
						
							| 138 | 1 106 137 | sylancl |  |-  ( ph -> ( A ^ 4 ) e. CC ) | 
						
							| 139 |  | 5nn0 |  |-  5 e. NN0 | 
						
							| 140 | 80 139 | deccl |  |-  ; 2 5 e. NN0 | 
						
							| 141 | 140 27 | decnncl |  |-  ; ; 2 5 6 e. NN | 
						
							| 142 | 141 | nncni |  |-  ; ; 2 5 6 e. CC | 
						
							| 143 | 142 | a1i |  |-  ( ph -> ; ; 2 5 6 e. CC ) | 
						
							| 144 | 141 | nnne0i |  |-  ; ; 2 5 6 =/= 0 | 
						
							| 145 | 144 | a1i |  |-  ( ph -> ; ; 2 5 6 =/= 0 ) | 
						
							| 146 | 138 143 145 | divcld |  |-  ( ph -> ( ( A ^ 4 ) / ; ; 2 5 6 ) e. CC ) | 
						
							| 147 | 136 146 | addcld |  |-  ( ph -> ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) e. CC ) | 
						
							| 148 | 133 147 | addcld |  |-  ( ph -> ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) e. CC ) | 
						
							| 149 | 1 2 3 4 5 6 7 | quart1cl |  |-  ( ph -> ( P e. CC /\ Q e. CC /\ R e. CC ) ) | 
						
							| 150 | 149 | simp1d |  |-  ( ph -> P e. CC ) | 
						
							| 151 | 8 15 | addcld |  |-  ( ph -> ( X + ( A / 4 ) ) e. CC ) | 
						
							| 152 | 9 151 | eqeltrd |  |-  ( ph -> Y e. CC ) | 
						
							| 153 | 152 | sqcld |  |-  ( ph -> ( Y ^ 2 ) e. CC ) | 
						
							| 154 | 150 153 | mulcld |  |-  ( ph -> ( P x. ( Y ^ 2 ) ) e. CC ) | 
						
							| 155 | 130 148 154 | addassd |  |-  ( ph -> ( ( ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) + ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) ) + ( P x. ( Y ^ 2 ) ) ) = ( ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) + ( ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) + ( P x. ( Y ^ 2 ) ) ) ) ) | 
						
							| 156 | 126 155 | eqtrd |  |-  ( ph -> ( ( Y ^ 4 ) + ( P x. ( Y ^ 2 ) ) ) = ( ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) + ( ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) + ( P x. ( Y ^ 2 ) ) ) ) ) | 
						
							| 157 | 156 | oveq1d |  |-  ( ph -> ( ( ( Y ^ 4 ) + ( P x. ( Y ^ 2 ) ) ) + ( ( Q x. Y ) + R ) ) = ( ( ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) + ( ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) + ( P x. ( Y ^ 2 ) ) ) ) + ( ( Q x. Y ) + R ) ) ) | 
						
							| 158 | 148 154 | addcld |  |-  ( ph -> ( ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) + ( P x. ( Y ^ 2 ) ) ) e. CC ) | 
						
							| 159 | 149 | simp2d |  |-  ( ph -> Q e. CC ) | 
						
							| 160 | 159 152 | mulcld |  |-  ( ph -> ( Q x. Y ) e. CC ) | 
						
							| 161 | 149 | simp3d |  |-  ( ph -> R e. CC ) | 
						
							| 162 | 160 161 | addcld |  |-  ( ph -> ( ( Q x. Y ) + R ) e. CC ) | 
						
							| 163 | 130 158 162 | addassd |  |-  ( ph -> ( ( ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) + ( ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) + ( P x. ( Y ^ 2 ) ) ) ) + ( ( Q x. Y ) + R ) ) = ( ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) + ( ( ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) + ( P x. ( Y ^ 2 ) ) ) + ( ( Q x. Y ) + R ) ) ) ) | 
						
							| 164 | 9 | oveq1d |  |-  ( ph -> ( Y ^ 2 ) = ( ( X + ( A / 4 ) ) ^ 2 ) ) | 
						
							| 165 |  | binom2 |  |-  ( ( X e. CC /\ ( A / 4 ) e. CC ) -> ( ( X + ( A / 4 ) ) ^ 2 ) = ( ( ( X ^ 2 ) + ( 2 x. ( X x. ( A / 4 ) ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) | 
						
							| 166 | 8 15 165 | syl2anc |  |-  ( ph -> ( ( X + ( A / 4 ) ) ^ 2 ) = ( ( ( X ^ 2 ) + ( 2 x. ( X x. ( A / 4 ) ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) | 
						
							| 167 | 8 15 | mulcld |  |-  ( ph -> ( X x. ( A / 4 ) ) e. CC ) | 
						
							| 168 |  | mulcl |  |-  ( ( 2 e. CC /\ ( X x. ( A / 4 ) ) e. CC ) -> ( 2 x. ( X x. ( A / 4 ) ) ) e. CC ) | 
						
							| 169 | 34 167 168 | sylancr |  |-  ( ph -> ( 2 x. ( X x. ( A / 4 ) ) ) e. CC ) | 
						
							| 170 | 31 169 30 | addassd |  |-  ( ph -> ( ( ( X ^ 2 ) + ( 2 x. ( X x. ( A / 4 ) ) ) ) + ( ( A / 4 ) ^ 2 ) ) = ( ( X ^ 2 ) + ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) | 
						
							| 171 | 164 166 170 | 3eqtrd |  |-  ( ph -> ( Y ^ 2 ) = ( ( X ^ 2 ) + ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) | 
						
							| 172 | 171 | oveq2d |  |-  ( ph -> ( P x. ( Y ^ 2 ) ) = ( P x. ( ( X ^ 2 ) + ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) ) | 
						
							| 173 | 169 30 | addcld |  |-  ( ph -> ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) e. CC ) | 
						
							| 174 | 150 31 173 | adddid |  |-  ( ph -> ( P x. ( ( X ^ 2 ) + ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) = ( ( P x. ( X ^ 2 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) ) | 
						
							| 175 | 172 174 | eqtrd |  |-  ( ph -> ( P x. ( Y ^ 2 ) ) = ( ( P x. ( X ^ 2 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) ) | 
						
							| 176 | 175 | oveq2d |  |-  ( ph -> ( ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) + ( P x. ( Y ^ 2 ) ) ) = ( ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) + ( ( P x. ( X ^ 2 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) ) ) | 
						
							| 177 | 150 31 | mulcld |  |-  ( ph -> ( P x. ( X ^ 2 ) ) e. CC ) | 
						
							| 178 | 150 173 | mulcld |  |-  ( ph -> ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) e. CC ) | 
						
							| 179 | 133 147 177 178 | add4d |  |-  ( ph -> ( ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) + ( ( P x. ( X ^ 2 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) ) = ( ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( P x. ( X ^ 2 ) ) ) + ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) ) ) | 
						
							| 180 | 132 150 31 | adddird |  |-  ( ph -> ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) + P ) x. ( X ^ 2 ) ) = ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( P x. ( X ^ 2 ) ) ) ) | 
						
							| 181 | 5 | oveq2d |  |-  ( ph -> ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) + P ) = ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) + ( B - ( ( 3 / 8 ) x. ( A ^ 2 ) ) ) ) ) | 
						
							| 182 | 132 2 | pncan3d |  |-  ( ph -> ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) + ( B - ( ( 3 / 8 ) x. ( A ^ 2 ) ) ) ) = B ) | 
						
							| 183 | 181 182 | eqtrd |  |-  ( ph -> ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) + P ) = B ) | 
						
							| 184 | 183 | oveq1d |  |-  ( ph -> ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) + P ) x. ( X ^ 2 ) ) = ( B x. ( X ^ 2 ) ) ) | 
						
							| 185 | 180 184 | eqtr3d |  |-  ( ph -> ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( P x. ( X ^ 2 ) ) ) = ( B x. ( X ^ 2 ) ) ) | 
						
							| 186 | 185 | oveq1d |  |-  ( ph -> ( ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( P x. ( X ^ 2 ) ) ) + ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) ) = ( ( B x. ( X ^ 2 ) ) + ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) ) ) | 
						
							| 187 | 176 179 186 | 3eqtrd |  |-  ( ph -> ( ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) + ( P x. ( Y ^ 2 ) ) ) = ( ( B x. ( X ^ 2 ) ) + ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) ) ) | 
						
							| 188 | 187 | oveq1d |  |-  ( ph -> ( ( ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) + ( P x. ( Y ^ 2 ) ) ) + ( ( Q x. Y ) + R ) ) = ( ( ( B x. ( X ^ 2 ) ) + ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) ) + ( ( Q x. Y ) + R ) ) ) | 
						
							| 189 | 2 31 | mulcld |  |-  ( ph -> ( B x. ( X ^ 2 ) ) e. CC ) | 
						
							| 190 | 147 178 | addcld |  |-  ( ph -> ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) e. CC ) | 
						
							| 191 | 189 190 162 | addassd |  |-  ( ph -> ( ( ( B x. ( X ^ 2 ) ) + ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) ) + ( ( Q x. Y ) + R ) ) = ( ( B x. ( X ^ 2 ) ) + ( ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) + ( ( Q x. Y ) + R ) ) ) ) | 
						
							| 192 | 1 2 | mulcld |  |-  ( ph -> ( A x. B ) e. CC ) | 
						
							| 193 | 192 | halfcld |  |-  ( ph -> ( ( A x. B ) / 2 ) e. CC ) | 
						
							| 194 | 193 134 | subcld |  |-  ( ph -> ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) e. CC ) | 
						
							| 195 | 194 8 | mulcld |  |-  ( ph -> ( ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) x. X ) e. CC ) | 
						
							| 196 | 150 30 | mulcld |  |-  ( ph -> ( P x. ( ( A / 4 ) ^ 2 ) ) e. CC ) | 
						
							| 197 | 146 196 | addcld |  |-  ( ph -> ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) e. CC ) | 
						
							| 198 | 159 8 | mulcld |  |-  ( ph -> ( Q x. X ) e. CC ) | 
						
							| 199 | 159 15 | mulcld |  |-  ( ph -> ( Q x. ( A / 4 ) ) e. CC ) | 
						
							| 200 | 199 161 | addcld |  |-  ( ph -> ( ( Q x. ( A / 4 ) ) + R ) e. CC ) | 
						
							| 201 | 195 197 198 200 | add4d |  |-  ( ph -> ( ( ( ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) x. X ) + ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) ) + ( ( Q x. X ) + ( ( Q x. ( A / 4 ) ) + R ) ) ) = ( ( ( ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) x. X ) + ( Q x. X ) ) + ( ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) + ( ( Q x. ( A / 4 ) ) + R ) ) ) ) | 
						
							| 202 | 150 169 30 | adddid |  |-  ( ph -> ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) = ( ( P x. ( 2 x. ( X x. ( A / 4 ) ) ) ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) ) | 
						
							| 203 | 202 | oveq2d |  |-  ( ph -> ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) = ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) + ( ( P x. ( 2 x. ( X x. ( A / 4 ) ) ) ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) ) ) | 
						
							| 204 | 150 169 | mulcld |  |-  ( ph -> ( P x. ( 2 x. ( X x. ( A / 4 ) ) ) ) e. CC ) | 
						
							| 205 | 136 146 204 196 | add4d |  |-  ( ph -> ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) + ( ( P x. ( 2 x. ( X x. ( A / 4 ) ) ) ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) ) = ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( P x. ( 2 x. ( X x. ( A / 4 ) ) ) ) ) + ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) ) ) | 
						
							| 206 | 1 95 95 98 98 | divdiv1d |  |-  ( ph -> ( ( A / 2 ) / 2 ) = ( A / ( 2 x. 2 ) ) ) | 
						
							| 207 |  | 2t2e4 |  |-  ( 2 x. 2 ) = 4 | 
						
							| 208 | 207 | oveq2i |  |-  ( A / ( 2 x. 2 ) ) = ( A / 4 ) | 
						
							| 209 | 206 208 | eqtrdi |  |-  ( ph -> ( ( A / 2 ) / 2 ) = ( A / 4 ) ) | 
						
							| 210 | 209 | oveq2d |  |-  ( ph -> ( 2 x. ( ( A / 2 ) / 2 ) ) = ( 2 x. ( A / 4 ) ) ) | 
						
							| 211 | 1 | halfcld |  |-  ( ph -> ( A / 2 ) e. CC ) | 
						
							| 212 | 211 95 98 | divcan2d |  |-  ( ph -> ( 2 x. ( ( A / 2 ) / 2 ) ) = ( A / 2 ) ) | 
						
							| 213 | 210 212 | eqtr3d |  |-  ( ph -> ( 2 x. ( A / 4 ) ) = ( A / 2 ) ) | 
						
							| 214 | 213 | oveq2d |  |-  ( ph -> ( X x. ( 2 x. ( A / 4 ) ) ) = ( X x. ( A / 2 ) ) ) | 
						
							| 215 | 8 211 | mulcomd |  |-  ( ph -> ( X x. ( A / 2 ) ) = ( ( A / 2 ) x. X ) ) | 
						
							| 216 | 214 215 | eqtrd |  |-  ( ph -> ( X x. ( 2 x. ( A / 4 ) ) ) = ( ( A / 2 ) x. X ) ) | 
						
							| 217 | 216 | oveq2d |  |-  ( ph -> ( P x. ( X x. ( 2 x. ( A / 4 ) ) ) ) = ( P x. ( ( A / 2 ) x. X ) ) ) | 
						
							| 218 | 95 8 15 | mul12d |  |-  ( ph -> ( 2 x. ( X x. ( A / 4 ) ) ) = ( X x. ( 2 x. ( A / 4 ) ) ) ) | 
						
							| 219 | 218 | oveq2d |  |-  ( ph -> ( P x. ( 2 x. ( X x. ( A / 4 ) ) ) ) = ( P x. ( X x. ( 2 x. ( A / 4 ) ) ) ) ) | 
						
							| 220 | 150 211 8 | mulassd |  |-  ( ph -> ( ( P x. ( A / 2 ) ) x. X ) = ( P x. ( ( A / 2 ) x. X ) ) ) | 
						
							| 221 | 217 219 220 | 3eqtr4d |  |-  ( ph -> ( P x. ( 2 x. ( X x. ( A / 4 ) ) ) ) = ( ( P x. ( A / 2 ) ) x. X ) ) | 
						
							| 222 | 221 | oveq2d |  |-  ( ph -> ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( P x. ( 2 x. ( X x. ( A / 4 ) ) ) ) ) = ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( P x. ( A / 2 ) ) x. X ) ) ) | 
						
							| 223 | 150 211 | mulcld |  |-  ( ph -> ( P x. ( A / 2 ) ) e. CC ) | 
						
							| 224 | 135 223 8 | adddird |  |-  ( ph -> ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) + ( P x. ( A / 2 ) ) ) x. X ) = ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( P x. ( A / 2 ) ) x. X ) ) ) | 
						
							| 225 | 5 | oveq1d |  |-  ( ph -> ( P x. ( A / 2 ) ) = ( ( B - ( ( 3 / 8 ) x. ( A ^ 2 ) ) ) x. ( A / 2 ) ) ) | 
						
							| 226 | 2 132 211 | subdird |  |-  ( ph -> ( ( B - ( ( 3 / 8 ) x. ( A ^ 2 ) ) ) x. ( A / 2 ) ) = ( ( B x. ( A / 2 ) ) - ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( A / 2 ) ) ) ) | 
						
							| 227 | 2 1 95 98 | divassd |  |-  ( ph -> ( ( B x. A ) / 2 ) = ( B x. ( A / 2 ) ) ) | 
						
							| 228 | 2 1 | mulcomd |  |-  ( ph -> ( B x. A ) = ( A x. B ) ) | 
						
							| 229 | 228 | oveq1d |  |-  ( ph -> ( ( B x. A ) / 2 ) = ( ( A x. B ) / 2 ) ) | 
						
							| 230 | 227 229 | eqtr3d |  |-  ( ph -> ( B x. ( A / 2 ) ) = ( ( A x. B ) / 2 ) ) | 
						
							| 231 | 78 | oveq2i |  |-  ( A ^ 3 ) = ( A ^ ( 2 + 1 ) ) | 
						
							| 232 |  | expp1 |  |-  ( ( A e. CC /\ 2 e. NN0 ) -> ( A ^ ( 2 + 1 ) ) = ( ( A ^ 2 ) x. A ) ) | 
						
							| 233 | 1 80 232 | sylancl |  |-  ( ph -> ( A ^ ( 2 + 1 ) ) = ( ( A ^ 2 ) x. A ) ) | 
						
							| 234 | 231 233 | eqtrid |  |-  ( ph -> ( A ^ 3 ) = ( ( A ^ 2 ) x. A ) ) | 
						
							| 235 | 234 | oveq2d |  |-  ( ph -> ( ( 3 / 8 ) x. ( A ^ 3 ) ) = ( ( 3 / 8 ) x. ( ( A ^ 2 ) x. A ) ) ) | 
						
							| 236 | 33 | a1i |  |-  ( ph -> 3 e. CC ) | 
						
							| 237 | 236 89 94 96 | div23d |  |-  ( ph -> ( ( 3 x. ( A ^ 3 ) ) / 8 ) = ( ( 3 / 8 ) x. ( A ^ 3 ) ) ) | 
						
							| 238 | 58 | a1i |  |-  ( ph -> ( 3 / 8 ) e. CC ) | 
						
							| 239 | 238 49 1 | mulassd |  |-  ( ph -> ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. A ) = ( ( 3 / 8 ) x. ( ( A ^ 2 ) x. A ) ) ) | 
						
							| 240 | 235 237 239 | 3eqtr4rd |  |-  ( ph -> ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. A ) = ( ( 3 x. ( A ^ 3 ) ) / 8 ) ) | 
						
							| 241 | 236 89 94 96 | divassd |  |-  ( ph -> ( ( 3 x. ( A ^ 3 ) ) / 8 ) = ( 3 x. ( ( A ^ 3 ) / 8 ) ) ) | 
						
							| 242 | 240 241 | eqtrd |  |-  ( ph -> ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. A ) = ( 3 x. ( ( A ^ 3 ) / 8 ) ) ) | 
						
							| 243 | 242 | oveq1d |  |-  ( ph -> ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. A ) / 2 ) = ( ( 3 x. ( ( A ^ 3 ) / 8 ) ) / 2 ) ) | 
						
							| 244 | 132 1 95 98 | divassd |  |-  ( ph -> ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. A ) / 2 ) = ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( A / 2 ) ) ) | 
						
							| 245 | 236 134 95 98 | divassd |  |-  ( ph -> ( ( 3 x. ( ( A ^ 3 ) / 8 ) ) / 2 ) = ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) ) | 
						
							| 246 | 243 244 245 | 3eqtr3d |  |-  ( ph -> ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( A / 2 ) ) = ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) ) | 
						
							| 247 | 230 246 | oveq12d |  |-  ( ph -> ( ( B x. ( A / 2 ) ) - ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( A / 2 ) ) ) = ( ( ( A x. B ) / 2 ) - ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) ) ) | 
						
							| 248 | 225 226 247 | 3eqtrd |  |-  ( ph -> ( P x. ( A / 2 ) ) = ( ( ( A x. B ) / 2 ) - ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) ) ) | 
						
							| 249 | 248 | oveq2d |  |-  ( ph -> ( ( ( ( A ^ 3 ) / 8 ) / 2 ) + ( P x. ( A / 2 ) ) ) = ( ( ( ( A ^ 3 ) / 8 ) / 2 ) + ( ( ( A x. B ) / 2 ) - ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) ) ) ) | 
						
							| 250 |  | mulcl |  |-  ( ( 3 e. CC /\ ( ( ( A ^ 3 ) / 8 ) / 2 ) e. CC ) -> ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) e. CC ) | 
						
							| 251 | 33 135 250 | sylancr |  |-  ( ph -> ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) e. CC ) | 
						
							| 252 | 135 193 251 | addsub12d |  |-  ( ph -> ( ( ( ( A ^ 3 ) / 8 ) / 2 ) + ( ( ( A x. B ) / 2 ) - ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) ) ) = ( ( ( A x. B ) / 2 ) + ( ( ( ( A ^ 3 ) / 8 ) / 2 ) - ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) ) ) ) | 
						
							| 253 | 193 251 135 | subsub2d |  |-  ( ph -> ( ( ( A x. B ) / 2 ) - ( ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) - ( ( ( A ^ 3 ) / 8 ) / 2 ) ) ) = ( ( ( A x. B ) / 2 ) + ( ( ( ( A ^ 3 ) / 8 ) / 2 ) - ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) ) ) ) | 
						
							| 254 | 135 | mullidd |  |-  ( ph -> ( 1 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) = ( ( ( A ^ 3 ) / 8 ) / 2 ) ) | 
						
							| 255 | 254 | oveq2d |  |-  ( ph -> ( ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) - ( 1 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) ) = ( ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) - ( ( ( A ^ 3 ) / 8 ) / 2 ) ) ) | 
						
							| 256 |  | 3m1e2 |  |-  ( 3 - 1 ) = 2 | 
						
							| 257 | 256 | oveq1i |  |-  ( ( 3 - 1 ) x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) = ( 2 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) | 
						
							| 258 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 259 | 236 258 135 | subdird |  |-  ( ph -> ( ( 3 - 1 ) x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) = ( ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) - ( 1 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) ) ) | 
						
							| 260 | 134 95 98 | divcan2d |  |-  ( ph -> ( 2 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) = ( ( A ^ 3 ) / 8 ) ) | 
						
							| 261 | 257 259 260 | 3eqtr3a |  |-  ( ph -> ( ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) - ( 1 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) ) = ( ( A ^ 3 ) / 8 ) ) | 
						
							| 262 | 255 261 | eqtr3d |  |-  ( ph -> ( ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) - ( ( ( A ^ 3 ) / 8 ) / 2 ) ) = ( ( A ^ 3 ) / 8 ) ) | 
						
							| 263 | 262 | oveq2d |  |-  ( ph -> ( ( ( A x. B ) / 2 ) - ( ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) - ( ( ( A ^ 3 ) / 8 ) / 2 ) ) ) = ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) ) | 
						
							| 264 | 252 253 263 | 3eqtr2d |  |-  ( ph -> ( ( ( ( A ^ 3 ) / 8 ) / 2 ) + ( ( ( A x. B ) / 2 ) - ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) ) ) = ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) ) | 
						
							| 265 | 249 264 | eqtrd |  |-  ( ph -> ( ( ( ( A ^ 3 ) / 8 ) / 2 ) + ( P x. ( A / 2 ) ) ) = ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) ) | 
						
							| 266 | 265 | oveq1d |  |-  ( ph -> ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) + ( P x. ( A / 2 ) ) ) x. X ) = ( ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) x. X ) ) | 
						
							| 267 | 222 224 266 | 3eqtr2d |  |-  ( ph -> ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( P x. ( 2 x. ( X x. ( A / 4 ) ) ) ) ) = ( ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) x. X ) ) | 
						
							| 268 | 267 | oveq1d |  |-  ( ph -> ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( P x. ( 2 x. ( X x. ( A / 4 ) ) ) ) ) + ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) ) = ( ( ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) x. X ) + ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) ) ) | 
						
							| 269 | 203 205 268 | 3eqtrd |  |-  ( ph -> ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) = ( ( ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) x. X ) + ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) ) ) | 
						
							| 270 | 9 | oveq2d |  |-  ( ph -> ( Q x. Y ) = ( Q x. ( X + ( A / 4 ) ) ) ) | 
						
							| 271 | 159 8 15 | adddid |  |-  ( ph -> ( Q x. ( X + ( A / 4 ) ) ) = ( ( Q x. X ) + ( Q x. ( A / 4 ) ) ) ) | 
						
							| 272 | 270 271 | eqtrd |  |-  ( ph -> ( Q x. Y ) = ( ( Q x. X ) + ( Q x. ( A / 4 ) ) ) ) | 
						
							| 273 | 272 | oveq1d |  |-  ( ph -> ( ( Q x. Y ) + R ) = ( ( ( Q x. X ) + ( Q x. ( A / 4 ) ) ) + R ) ) | 
						
							| 274 | 198 199 161 | addassd |  |-  ( ph -> ( ( ( Q x. X ) + ( Q x. ( A / 4 ) ) ) + R ) = ( ( Q x. X ) + ( ( Q x. ( A / 4 ) ) + R ) ) ) | 
						
							| 275 | 273 274 | eqtrd |  |-  ( ph -> ( ( Q x. Y ) + R ) = ( ( Q x. X ) + ( ( Q x. ( A / 4 ) ) + R ) ) ) | 
						
							| 276 | 269 275 | oveq12d |  |-  ( ph -> ( ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) + ( ( Q x. Y ) + R ) ) = ( ( ( ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) x. X ) + ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) ) + ( ( Q x. X ) + ( ( Q x. ( A / 4 ) ) + R ) ) ) ) | 
						
							| 277 | 194 159 | addcomd |  |-  ( ph -> ( ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) + Q ) = ( Q + ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) ) ) | 
						
							| 278 | 6 | oveq1d |  |-  ( ph -> ( Q + ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) ) = ( ( ( C - ( ( A x. B ) / 2 ) ) + ( ( A ^ 3 ) / 8 ) ) + ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) ) ) | 
						
							| 279 | 3 193 | subcld |  |-  ( ph -> ( C - ( ( A x. B ) / 2 ) ) e. CC ) | 
						
							| 280 | 279 134 193 | ppncand |  |-  ( ph -> ( ( ( C - ( ( A x. B ) / 2 ) ) + ( ( A ^ 3 ) / 8 ) ) + ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) ) = ( ( C - ( ( A x. B ) / 2 ) ) + ( ( A x. B ) / 2 ) ) ) | 
						
							| 281 | 3 193 | npcand |  |-  ( ph -> ( ( C - ( ( A x. B ) / 2 ) ) + ( ( A x. B ) / 2 ) ) = C ) | 
						
							| 282 | 280 281 | eqtrd |  |-  ( ph -> ( ( ( C - ( ( A x. B ) / 2 ) ) + ( ( A ^ 3 ) / 8 ) ) + ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) ) = C ) | 
						
							| 283 | 277 278 282 | 3eqtrd |  |-  ( ph -> ( ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) + Q ) = C ) | 
						
							| 284 | 283 | oveq1d |  |-  ( ph -> ( ( ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) + Q ) x. X ) = ( C x. X ) ) | 
						
							| 285 | 194 159 8 | adddird |  |-  ( ph -> ( ( ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) + Q ) x. X ) = ( ( ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) x. X ) + ( Q x. X ) ) ) | 
						
							| 286 | 284 285 | eqtr3d |  |-  ( ph -> ( C x. X ) = ( ( ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) x. X ) + ( Q x. X ) ) ) | 
						
							| 287 | 1 2 3 4 5 6 7 8 9 | quart1lem |  |-  ( ph -> D = ( ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) + ( ( Q x. ( A / 4 ) ) + R ) ) ) | 
						
							| 288 | 286 287 | oveq12d |  |-  ( ph -> ( ( C x. X ) + D ) = ( ( ( ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) x. X ) + ( Q x. X ) ) + ( ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) + ( ( Q x. ( A / 4 ) ) + R ) ) ) ) | 
						
							| 289 | 201 276 288 | 3eqtr4d |  |-  ( ph -> ( ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) + ( ( Q x. Y ) + R ) ) = ( ( C x. X ) + D ) ) | 
						
							| 290 | 289 | oveq2d |  |-  ( ph -> ( ( B x. ( X ^ 2 ) ) + ( ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) + ( ( Q x. Y ) + R ) ) ) = ( ( B x. ( X ^ 2 ) ) + ( ( C x. X ) + D ) ) ) | 
						
							| 291 | 188 191 290 | 3eqtrd |  |-  ( ph -> ( ( ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) + ( P x. ( Y ^ 2 ) ) ) + ( ( Q x. Y ) + R ) ) = ( ( B x. ( X ^ 2 ) ) + ( ( C x. X ) + D ) ) ) | 
						
							| 292 | 291 | oveq2d |  |-  ( ph -> ( ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) + ( ( ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) + ( P x. ( Y ^ 2 ) ) ) + ( ( Q x. Y ) + R ) ) ) = ( ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) + ( ( B x. ( X ^ 2 ) ) + ( ( C x. X ) + D ) ) ) ) | 
						
							| 293 | 157 163 292 | 3eqtrrd |  |-  ( ph -> ( ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) + ( ( B x. ( X ^ 2 ) ) + ( ( C x. X ) + D ) ) ) = ( ( ( Y ^ 4 ) + ( P x. ( Y ^ 2 ) ) ) + ( ( Q x. Y ) + R ) ) ) |