| Step |
Hyp |
Ref |
Expression |
| 1 |
|
quart1.a |
|- ( ph -> A e. CC ) |
| 2 |
|
quart1.b |
|- ( ph -> B e. CC ) |
| 3 |
|
quart1.c |
|- ( ph -> C e. CC ) |
| 4 |
|
quart1.d |
|- ( ph -> D e. CC ) |
| 5 |
|
quart1.p |
|- ( ph -> P = ( B - ( ( 3 / 8 ) x. ( A ^ 2 ) ) ) ) |
| 6 |
|
quart1.q |
|- ( ph -> Q = ( ( C - ( ( A x. B ) / 2 ) ) + ( ( A ^ 3 ) / 8 ) ) ) |
| 7 |
|
quart1.r |
|- ( ph -> R = ( ( D - ( ( C x. A ) / 4 ) ) + ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) - ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) ) ) |
| 8 |
|
quart1.x |
|- ( ph -> X e. CC ) |
| 9 |
|
quart1.y |
|- ( ph -> Y = ( X + ( A / 4 ) ) ) |
| 10 |
9
|
oveq1d |
|- ( ph -> ( Y ^ 4 ) = ( ( X + ( A / 4 ) ) ^ 4 ) ) |
| 11 |
|
4cn |
|- 4 e. CC |
| 12 |
11
|
a1i |
|- ( ph -> 4 e. CC ) |
| 13 |
|
4ne0 |
|- 4 =/= 0 |
| 14 |
13
|
a1i |
|- ( ph -> 4 =/= 0 ) |
| 15 |
1 12 14
|
divcld |
|- ( ph -> ( A / 4 ) e. CC ) |
| 16 |
|
binom4 |
|- ( ( X e. CC /\ ( A / 4 ) e. CC ) -> ( ( X + ( A / 4 ) ) ^ 4 ) = ( ( ( X ^ 4 ) + ( 4 x. ( ( X ^ 3 ) x. ( A / 4 ) ) ) ) + ( ( 6 x. ( ( X ^ 2 ) x. ( ( A / 4 ) ^ 2 ) ) ) + ( ( 4 x. ( X x. ( ( A / 4 ) ^ 3 ) ) ) + ( ( A / 4 ) ^ 4 ) ) ) ) ) |
| 17 |
8 15 16
|
syl2anc |
|- ( ph -> ( ( X + ( A / 4 ) ) ^ 4 ) = ( ( ( X ^ 4 ) + ( 4 x. ( ( X ^ 3 ) x. ( A / 4 ) ) ) ) + ( ( 6 x. ( ( X ^ 2 ) x. ( ( A / 4 ) ^ 2 ) ) ) + ( ( 4 x. ( X x. ( ( A / 4 ) ^ 3 ) ) ) + ( ( A / 4 ) ^ 4 ) ) ) ) ) |
| 18 |
|
3nn0 |
|- 3 e. NN0 |
| 19 |
|
expcl |
|- ( ( X e. CC /\ 3 e. NN0 ) -> ( X ^ 3 ) e. CC ) |
| 20 |
8 18 19
|
sylancl |
|- ( ph -> ( X ^ 3 ) e. CC ) |
| 21 |
12 20 15
|
mul12d |
|- ( ph -> ( 4 x. ( ( X ^ 3 ) x. ( A / 4 ) ) ) = ( ( X ^ 3 ) x. ( 4 x. ( A / 4 ) ) ) ) |
| 22 |
1 12 14
|
divcan2d |
|- ( ph -> ( 4 x. ( A / 4 ) ) = A ) |
| 23 |
22
|
oveq2d |
|- ( ph -> ( ( X ^ 3 ) x. ( 4 x. ( A / 4 ) ) ) = ( ( X ^ 3 ) x. A ) ) |
| 24 |
20 1
|
mulcomd |
|- ( ph -> ( ( X ^ 3 ) x. A ) = ( A x. ( X ^ 3 ) ) ) |
| 25 |
21 23 24
|
3eqtrd |
|- ( ph -> ( 4 x. ( ( X ^ 3 ) x. ( A / 4 ) ) ) = ( A x. ( X ^ 3 ) ) ) |
| 26 |
25
|
oveq2d |
|- ( ph -> ( ( X ^ 4 ) + ( 4 x. ( ( X ^ 3 ) x. ( A / 4 ) ) ) ) = ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) ) |
| 27 |
|
6nn |
|- 6 e. NN |
| 28 |
27
|
nncni |
|- 6 e. CC |
| 29 |
28
|
a1i |
|- ( ph -> 6 e. CC ) |
| 30 |
15
|
sqcld |
|- ( ph -> ( ( A / 4 ) ^ 2 ) e. CC ) |
| 31 |
8
|
sqcld |
|- ( ph -> ( X ^ 2 ) e. CC ) |
| 32 |
29 30 31
|
mulassd |
|- ( ph -> ( ( 6 x. ( ( A / 4 ) ^ 2 ) ) x. ( X ^ 2 ) ) = ( 6 x. ( ( ( A / 4 ) ^ 2 ) x. ( X ^ 2 ) ) ) ) |
| 33 |
|
3cn |
|- 3 e. CC |
| 34 |
|
2cn |
|- 2 e. CC |
| 35 |
|
3t2e6 |
|- ( 3 x. 2 ) = 6 |
| 36 |
33 34 35
|
mulcomli |
|- ( 2 x. 3 ) = 6 |
| 37 |
|
8cn |
|- 8 e. CC |
| 38 |
|
8t2e16 |
|- ( 8 x. 2 ) = ; 1 6 |
| 39 |
37 34 38
|
mulcomli |
|- ( 2 x. 8 ) = ; 1 6 |
| 40 |
36 39
|
oveq12i |
|- ( ( 2 x. 3 ) / ( 2 x. 8 ) ) = ( 6 / ; 1 6 ) |
| 41 |
|
8nn |
|- 8 e. NN |
| 42 |
41
|
nnne0i |
|- 8 =/= 0 |
| 43 |
37 42
|
pm3.2i |
|- ( 8 e. CC /\ 8 =/= 0 ) |
| 44 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
| 45 |
|
divcan5 |
|- ( ( 3 e. CC /\ ( 8 e. CC /\ 8 =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( 2 x. 3 ) / ( 2 x. 8 ) ) = ( 3 / 8 ) ) |
| 46 |
33 43 44 45
|
mp3an |
|- ( ( 2 x. 3 ) / ( 2 x. 8 ) ) = ( 3 / 8 ) |
| 47 |
40 46
|
eqtr3i |
|- ( 6 / ; 1 6 ) = ( 3 / 8 ) |
| 48 |
47
|
oveq2i |
|- ( ( A ^ 2 ) x. ( 6 / ; 1 6 ) ) = ( ( A ^ 2 ) x. ( 3 / 8 ) ) |
| 49 |
1
|
sqcld |
|- ( ph -> ( A ^ 2 ) e. CC ) |
| 50 |
|
1nn0 |
|- 1 e. NN0 |
| 51 |
50 27
|
decnncl |
|- ; 1 6 e. NN |
| 52 |
51
|
nncni |
|- ; 1 6 e. CC |
| 53 |
52
|
a1i |
|- ( ph -> ; 1 6 e. CC ) |
| 54 |
51
|
nnne0i |
|- ; 1 6 =/= 0 |
| 55 |
54
|
a1i |
|- ( ph -> ; 1 6 =/= 0 ) |
| 56 |
49 29 53 55
|
div12d |
|- ( ph -> ( ( A ^ 2 ) x. ( 6 / ; 1 6 ) ) = ( 6 x. ( ( A ^ 2 ) / ; 1 6 ) ) ) |
| 57 |
48 56
|
eqtr3id |
|- ( ph -> ( ( A ^ 2 ) x. ( 3 / 8 ) ) = ( 6 x. ( ( A ^ 2 ) / ; 1 6 ) ) ) |
| 58 |
33 37 42
|
divcli |
|- ( 3 / 8 ) e. CC |
| 59 |
|
mulcom |
|- ( ( ( 3 / 8 ) e. CC /\ ( A ^ 2 ) e. CC ) -> ( ( 3 / 8 ) x. ( A ^ 2 ) ) = ( ( A ^ 2 ) x. ( 3 / 8 ) ) ) |
| 60 |
58 49 59
|
sylancr |
|- ( ph -> ( ( 3 / 8 ) x. ( A ^ 2 ) ) = ( ( A ^ 2 ) x. ( 3 / 8 ) ) ) |
| 61 |
1 12 14
|
sqdivd |
|- ( ph -> ( ( A / 4 ) ^ 2 ) = ( ( A ^ 2 ) / ( 4 ^ 2 ) ) ) |
| 62 |
11
|
sqvali |
|- ( 4 ^ 2 ) = ( 4 x. 4 ) |
| 63 |
|
4t4e16 |
|- ( 4 x. 4 ) = ; 1 6 |
| 64 |
62 63
|
eqtri |
|- ( 4 ^ 2 ) = ; 1 6 |
| 65 |
64
|
oveq2i |
|- ( ( A ^ 2 ) / ( 4 ^ 2 ) ) = ( ( A ^ 2 ) / ; 1 6 ) |
| 66 |
61 65
|
eqtrdi |
|- ( ph -> ( ( A / 4 ) ^ 2 ) = ( ( A ^ 2 ) / ; 1 6 ) ) |
| 67 |
66
|
oveq2d |
|- ( ph -> ( 6 x. ( ( A / 4 ) ^ 2 ) ) = ( 6 x. ( ( A ^ 2 ) / ; 1 6 ) ) ) |
| 68 |
57 60 67
|
3eqtr4d |
|- ( ph -> ( ( 3 / 8 ) x. ( A ^ 2 ) ) = ( 6 x. ( ( A / 4 ) ^ 2 ) ) ) |
| 69 |
68
|
oveq1d |
|- ( ph -> ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) = ( ( 6 x. ( ( A / 4 ) ^ 2 ) ) x. ( X ^ 2 ) ) ) |
| 70 |
31 30
|
mulcomd |
|- ( ph -> ( ( X ^ 2 ) x. ( ( A / 4 ) ^ 2 ) ) = ( ( ( A / 4 ) ^ 2 ) x. ( X ^ 2 ) ) ) |
| 71 |
70
|
oveq2d |
|- ( ph -> ( 6 x. ( ( X ^ 2 ) x. ( ( A / 4 ) ^ 2 ) ) ) = ( 6 x. ( ( ( A / 4 ) ^ 2 ) x. ( X ^ 2 ) ) ) ) |
| 72 |
32 69 71
|
3eqtr4rd |
|- ( ph -> ( 6 x. ( ( X ^ 2 ) x. ( ( A / 4 ) ^ 2 ) ) ) = ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) ) |
| 73 |
|
expcl |
|- ( ( ( A / 4 ) e. CC /\ 3 e. NN0 ) -> ( ( A / 4 ) ^ 3 ) e. CC ) |
| 74 |
15 18 73
|
sylancl |
|- ( ph -> ( ( A / 4 ) ^ 3 ) e. CC ) |
| 75 |
12 8 74
|
mul12d |
|- ( ph -> ( 4 x. ( X x. ( ( A / 4 ) ^ 3 ) ) ) = ( X x. ( 4 x. ( ( A / 4 ) ^ 3 ) ) ) ) |
| 76 |
12 74
|
mulcld |
|- ( ph -> ( 4 x. ( ( A / 4 ) ^ 3 ) ) e. CC ) |
| 77 |
8 76
|
mulcomd |
|- ( ph -> ( X x. ( 4 x. ( ( A / 4 ) ^ 3 ) ) ) = ( ( 4 x. ( ( A / 4 ) ^ 3 ) ) x. X ) ) |
| 78 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
| 79 |
78
|
oveq2i |
|- ( 4 ^ 3 ) = ( 4 ^ ( 2 + 1 ) ) |
| 80 |
|
2nn0 |
|- 2 e. NN0 |
| 81 |
|
expp1 |
|- ( ( 4 e. CC /\ 2 e. NN0 ) -> ( 4 ^ ( 2 + 1 ) ) = ( ( 4 ^ 2 ) x. 4 ) ) |
| 82 |
11 80 81
|
mp2an |
|- ( 4 ^ ( 2 + 1 ) ) = ( ( 4 ^ 2 ) x. 4 ) |
| 83 |
64
|
oveq1i |
|- ( ( 4 ^ 2 ) x. 4 ) = ( ; 1 6 x. 4 ) |
| 84 |
79 82 83
|
3eqtri |
|- ( 4 ^ 3 ) = ( ; 1 6 x. 4 ) |
| 85 |
84
|
oveq2i |
|- ( ( A ^ 3 ) / ( 4 ^ 3 ) ) = ( ( A ^ 3 ) / ( ; 1 6 x. 4 ) ) |
| 86 |
18
|
a1i |
|- ( ph -> 3 e. NN0 ) |
| 87 |
1 12 14 86
|
expdivd |
|- ( ph -> ( ( A / 4 ) ^ 3 ) = ( ( A ^ 3 ) / ( 4 ^ 3 ) ) ) |
| 88 |
|
expcl |
|- ( ( A e. CC /\ 3 e. NN0 ) -> ( A ^ 3 ) e. CC ) |
| 89 |
1 18 88
|
sylancl |
|- ( ph -> ( A ^ 3 ) e. CC ) |
| 90 |
89 53 12 55 14
|
divdiv1d |
|- ( ph -> ( ( ( A ^ 3 ) / ; 1 6 ) / 4 ) = ( ( A ^ 3 ) / ( ; 1 6 x. 4 ) ) ) |
| 91 |
85 87 90
|
3eqtr4a |
|- ( ph -> ( ( A / 4 ) ^ 3 ) = ( ( ( A ^ 3 ) / ; 1 6 ) / 4 ) ) |
| 92 |
91
|
oveq2d |
|- ( ph -> ( 4 x. ( ( A / 4 ) ^ 3 ) ) = ( 4 x. ( ( ( A ^ 3 ) / ; 1 6 ) / 4 ) ) ) |
| 93 |
38
|
oveq2i |
|- ( ( A ^ 3 ) / ( 8 x. 2 ) ) = ( ( A ^ 3 ) / ; 1 6 ) |
| 94 |
37
|
a1i |
|- ( ph -> 8 e. CC ) |
| 95 |
34
|
a1i |
|- ( ph -> 2 e. CC ) |
| 96 |
42
|
a1i |
|- ( ph -> 8 =/= 0 ) |
| 97 |
|
2ne0 |
|- 2 =/= 0 |
| 98 |
97
|
a1i |
|- ( ph -> 2 =/= 0 ) |
| 99 |
89 94 95 96 98
|
divdiv1d |
|- ( ph -> ( ( ( A ^ 3 ) / 8 ) / 2 ) = ( ( A ^ 3 ) / ( 8 x. 2 ) ) ) |
| 100 |
89 53 55
|
divcld |
|- ( ph -> ( ( A ^ 3 ) / ; 1 6 ) e. CC ) |
| 101 |
100 12 14
|
divcan2d |
|- ( ph -> ( 4 x. ( ( ( A ^ 3 ) / ; 1 6 ) / 4 ) ) = ( ( A ^ 3 ) / ; 1 6 ) ) |
| 102 |
93 99 101
|
3eqtr4a |
|- ( ph -> ( ( ( A ^ 3 ) / 8 ) / 2 ) = ( 4 x. ( ( ( A ^ 3 ) / ; 1 6 ) / 4 ) ) ) |
| 103 |
92 102
|
eqtr4d |
|- ( ph -> ( 4 x. ( ( A / 4 ) ^ 3 ) ) = ( ( ( A ^ 3 ) / 8 ) / 2 ) ) |
| 104 |
103
|
oveq1d |
|- ( ph -> ( ( 4 x. ( ( A / 4 ) ^ 3 ) ) x. X ) = ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) ) |
| 105 |
75 77 104
|
3eqtrd |
|- ( ph -> ( 4 x. ( X x. ( ( A / 4 ) ^ 3 ) ) ) = ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) ) |
| 106 |
|
4nn0 |
|- 4 e. NN0 |
| 107 |
106
|
a1i |
|- ( ph -> 4 e. NN0 ) |
| 108 |
1 12 14 107
|
expdivd |
|- ( ph -> ( ( A / 4 ) ^ 4 ) = ( ( A ^ 4 ) / ( 4 ^ 4 ) ) ) |
| 109 |
|
expmul |
|- ( ( 2 e. CC /\ 2 e. NN0 /\ 4 e. NN0 ) -> ( 2 ^ ( 2 x. 4 ) ) = ( ( 2 ^ 2 ) ^ 4 ) ) |
| 110 |
34 80 106 109
|
mp3an |
|- ( 2 ^ ( 2 x. 4 ) ) = ( ( 2 ^ 2 ) ^ 4 ) |
| 111 |
|
4t2e8 |
|- ( 4 x. 2 ) = 8 |
| 112 |
11 34 111
|
mulcomli |
|- ( 2 x. 4 ) = 8 |
| 113 |
112
|
oveq2i |
|- ( 2 ^ ( 2 x. 4 ) ) = ( 2 ^ 8 ) |
| 114 |
110 113
|
eqtr3i |
|- ( ( 2 ^ 2 ) ^ 4 ) = ( 2 ^ 8 ) |
| 115 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
| 116 |
115
|
oveq1i |
|- ( ( 2 ^ 2 ) ^ 4 ) = ( 4 ^ 4 ) |
| 117 |
114 116
|
eqtr3i |
|- ( 2 ^ 8 ) = ( 4 ^ 4 ) |
| 118 |
|
2exp8 |
|- ( 2 ^ 8 ) = ; ; 2 5 6 |
| 119 |
117 118
|
eqtr3i |
|- ( 4 ^ 4 ) = ; ; 2 5 6 |
| 120 |
119
|
oveq2i |
|- ( ( A ^ 4 ) / ( 4 ^ 4 ) ) = ( ( A ^ 4 ) / ; ; 2 5 6 ) |
| 121 |
108 120
|
eqtrdi |
|- ( ph -> ( ( A / 4 ) ^ 4 ) = ( ( A ^ 4 ) / ; ; 2 5 6 ) ) |
| 122 |
105 121
|
oveq12d |
|- ( ph -> ( ( 4 x. ( X x. ( ( A / 4 ) ^ 3 ) ) ) + ( ( A / 4 ) ^ 4 ) ) = ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) |
| 123 |
72 122
|
oveq12d |
|- ( ph -> ( ( 6 x. ( ( X ^ 2 ) x. ( ( A / 4 ) ^ 2 ) ) ) + ( ( 4 x. ( X x. ( ( A / 4 ) ^ 3 ) ) ) + ( ( A / 4 ) ^ 4 ) ) ) = ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) ) |
| 124 |
26 123
|
oveq12d |
|- ( ph -> ( ( ( X ^ 4 ) + ( 4 x. ( ( X ^ 3 ) x. ( A / 4 ) ) ) ) + ( ( 6 x. ( ( X ^ 2 ) x. ( ( A / 4 ) ^ 2 ) ) ) + ( ( 4 x. ( X x. ( ( A / 4 ) ^ 3 ) ) ) + ( ( A / 4 ) ^ 4 ) ) ) ) = ( ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) + ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) ) ) |
| 125 |
10 17 124
|
3eqtrd |
|- ( ph -> ( Y ^ 4 ) = ( ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) + ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) ) ) |
| 126 |
125
|
oveq1d |
|- ( ph -> ( ( Y ^ 4 ) + ( P x. ( Y ^ 2 ) ) ) = ( ( ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) + ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) ) + ( P x. ( Y ^ 2 ) ) ) ) |
| 127 |
|
expcl |
|- ( ( X e. CC /\ 4 e. NN0 ) -> ( X ^ 4 ) e. CC ) |
| 128 |
8 106 127
|
sylancl |
|- ( ph -> ( X ^ 4 ) e. CC ) |
| 129 |
1 20
|
mulcld |
|- ( ph -> ( A x. ( X ^ 3 ) ) e. CC ) |
| 130 |
128 129
|
addcld |
|- ( ph -> ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) e. CC ) |
| 131 |
|
mulcl |
|- ( ( ( 3 / 8 ) e. CC /\ ( A ^ 2 ) e. CC ) -> ( ( 3 / 8 ) x. ( A ^ 2 ) ) e. CC ) |
| 132 |
58 49 131
|
sylancr |
|- ( ph -> ( ( 3 / 8 ) x. ( A ^ 2 ) ) e. CC ) |
| 133 |
132 31
|
mulcld |
|- ( ph -> ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) e. CC ) |
| 134 |
89 94 96
|
divcld |
|- ( ph -> ( ( A ^ 3 ) / 8 ) e. CC ) |
| 135 |
134
|
halfcld |
|- ( ph -> ( ( ( A ^ 3 ) / 8 ) / 2 ) e. CC ) |
| 136 |
135 8
|
mulcld |
|- ( ph -> ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) e. CC ) |
| 137 |
|
expcl |
|- ( ( A e. CC /\ 4 e. NN0 ) -> ( A ^ 4 ) e. CC ) |
| 138 |
1 106 137
|
sylancl |
|- ( ph -> ( A ^ 4 ) e. CC ) |
| 139 |
|
5nn0 |
|- 5 e. NN0 |
| 140 |
80 139
|
deccl |
|- ; 2 5 e. NN0 |
| 141 |
140 27
|
decnncl |
|- ; ; 2 5 6 e. NN |
| 142 |
141
|
nncni |
|- ; ; 2 5 6 e. CC |
| 143 |
142
|
a1i |
|- ( ph -> ; ; 2 5 6 e. CC ) |
| 144 |
141
|
nnne0i |
|- ; ; 2 5 6 =/= 0 |
| 145 |
144
|
a1i |
|- ( ph -> ; ; 2 5 6 =/= 0 ) |
| 146 |
138 143 145
|
divcld |
|- ( ph -> ( ( A ^ 4 ) / ; ; 2 5 6 ) e. CC ) |
| 147 |
136 146
|
addcld |
|- ( ph -> ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) e. CC ) |
| 148 |
133 147
|
addcld |
|- ( ph -> ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) e. CC ) |
| 149 |
1 2 3 4 5 6 7
|
quart1cl |
|- ( ph -> ( P e. CC /\ Q e. CC /\ R e. CC ) ) |
| 150 |
149
|
simp1d |
|- ( ph -> P e. CC ) |
| 151 |
8 15
|
addcld |
|- ( ph -> ( X + ( A / 4 ) ) e. CC ) |
| 152 |
9 151
|
eqeltrd |
|- ( ph -> Y e. CC ) |
| 153 |
152
|
sqcld |
|- ( ph -> ( Y ^ 2 ) e. CC ) |
| 154 |
150 153
|
mulcld |
|- ( ph -> ( P x. ( Y ^ 2 ) ) e. CC ) |
| 155 |
130 148 154
|
addassd |
|- ( ph -> ( ( ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) + ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) ) + ( P x. ( Y ^ 2 ) ) ) = ( ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) + ( ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) + ( P x. ( Y ^ 2 ) ) ) ) ) |
| 156 |
126 155
|
eqtrd |
|- ( ph -> ( ( Y ^ 4 ) + ( P x. ( Y ^ 2 ) ) ) = ( ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) + ( ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) + ( P x. ( Y ^ 2 ) ) ) ) ) |
| 157 |
156
|
oveq1d |
|- ( ph -> ( ( ( Y ^ 4 ) + ( P x. ( Y ^ 2 ) ) ) + ( ( Q x. Y ) + R ) ) = ( ( ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) + ( ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) + ( P x. ( Y ^ 2 ) ) ) ) + ( ( Q x. Y ) + R ) ) ) |
| 158 |
148 154
|
addcld |
|- ( ph -> ( ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) + ( P x. ( Y ^ 2 ) ) ) e. CC ) |
| 159 |
149
|
simp2d |
|- ( ph -> Q e. CC ) |
| 160 |
159 152
|
mulcld |
|- ( ph -> ( Q x. Y ) e. CC ) |
| 161 |
149
|
simp3d |
|- ( ph -> R e. CC ) |
| 162 |
160 161
|
addcld |
|- ( ph -> ( ( Q x. Y ) + R ) e. CC ) |
| 163 |
130 158 162
|
addassd |
|- ( ph -> ( ( ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) + ( ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) + ( P x. ( Y ^ 2 ) ) ) ) + ( ( Q x. Y ) + R ) ) = ( ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) + ( ( ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) + ( P x. ( Y ^ 2 ) ) ) + ( ( Q x. Y ) + R ) ) ) ) |
| 164 |
9
|
oveq1d |
|- ( ph -> ( Y ^ 2 ) = ( ( X + ( A / 4 ) ) ^ 2 ) ) |
| 165 |
|
binom2 |
|- ( ( X e. CC /\ ( A / 4 ) e. CC ) -> ( ( X + ( A / 4 ) ) ^ 2 ) = ( ( ( X ^ 2 ) + ( 2 x. ( X x. ( A / 4 ) ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) |
| 166 |
8 15 165
|
syl2anc |
|- ( ph -> ( ( X + ( A / 4 ) ) ^ 2 ) = ( ( ( X ^ 2 ) + ( 2 x. ( X x. ( A / 4 ) ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) |
| 167 |
8 15
|
mulcld |
|- ( ph -> ( X x. ( A / 4 ) ) e. CC ) |
| 168 |
|
mulcl |
|- ( ( 2 e. CC /\ ( X x. ( A / 4 ) ) e. CC ) -> ( 2 x. ( X x. ( A / 4 ) ) ) e. CC ) |
| 169 |
34 167 168
|
sylancr |
|- ( ph -> ( 2 x. ( X x. ( A / 4 ) ) ) e. CC ) |
| 170 |
31 169 30
|
addassd |
|- ( ph -> ( ( ( X ^ 2 ) + ( 2 x. ( X x. ( A / 4 ) ) ) ) + ( ( A / 4 ) ^ 2 ) ) = ( ( X ^ 2 ) + ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) |
| 171 |
164 166 170
|
3eqtrd |
|- ( ph -> ( Y ^ 2 ) = ( ( X ^ 2 ) + ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) |
| 172 |
171
|
oveq2d |
|- ( ph -> ( P x. ( Y ^ 2 ) ) = ( P x. ( ( X ^ 2 ) + ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) ) |
| 173 |
169 30
|
addcld |
|- ( ph -> ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) e. CC ) |
| 174 |
150 31 173
|
adddid |
|- ( ph -> ( P x. ( ( X ^ 2 ) + ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) = ( ( P x. ( X ^ 2 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) ) |
| 175 |
172 174
|
eqtrd |
|- ( ph -> ( P x. ( Y ^ 2 ) ) = ( ( P x. ( X ^ 2 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) ) |
| 176 |
175
|
oveq2d |
|- ( ph -> ( ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) + ( P x. ( Y ^ 2 ) ) ) = ( ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) + ( ( P x. ( X ^ 2 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) ) ) |
| 177 |
150 31
|
mulcld |
|- ( ph -> ( P x. ( X ^ 2 ) ) e. CC ) |
| 178 |
150 173
|
mulcld |
|- ( ph -> ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) e. CC ) |
| 179 |
133 147 177 178
|
add4d |
|- ( ph -> ( ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) + ( ( P x. ( X ^ 2 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) ) = ( ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( P x. ( X ^ 2 ) ) ) + ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) ) ) |
| 180 |
132 150 31
|
adddird |
|- ( ph -> ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) + P ) x. ( X ^ 2 ) ) = ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( P x. ( X ^ 2 ) ) ) ) |
| 181 |
5
|
oveq2d |
|- ( ph -> ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) + P ) = ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) + ( B - ( ( 3 / 8 ) x. ( A ^ 2 ) ) ) ) ) |
| 182 |
132 2
|
pncan3d |
|- ( ph -> ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) + ( B - ( ( 3 / 8 ) x. ( A ^ 2 ) ) ) ) = B ) |
| 183 |
181 182
|
eqtrd |
|- ( ph -> ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) + P ) = B ) |
| 184 |
183
|
oveq1d |
|- ( ph -> ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) + P ) x. ( X ^ 2 ) ) = ( B x. ( X ^ 2 ) ) ) |
| 185 |
180 184
|
eqtr3d |
|- ( ph -> ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( P x. ( X ^ 2 ) ) ) = ( B x. ( X ^ 2 ) ) ) |
| 186 |
185
|
oveq1d |
|- ( ph -> ( ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( P x. ( X ^ 2 ) ) ) + ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) ) = ( ( B x. ( X ^ 2 ) ) + ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) ) ) |
| 187 |
176 179 186
|
3eqtrd |
|- ( ph -> ( ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) + ( P x. ( Y ^ 2 ) ) ) = ( ( B x. ( X ^ 2 ) ) + ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) ) ) |
| 188 |
187
|
oveq1d |
|- ( ph -> ( ( ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) + ( P x. ( Y ^ 2 ) ) ) + ( ( Q x. Y ) + R ) ) = ( ( ( B x. ( X ^ 2 ) ) + ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) ) + ( ( Q x. Y ) + R ) ) ) |
| 189 |
2 31
|
mulcld |
|- ( ph -> ( B x. ( X ^ 2 ) ) e. CC ) |
| 190 |
147 178
|
addcld |
|- ( ph -> ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) e. CC ) |
| 191 |
189 190 162
|
addassd |
|- ( ph -> ( ( ( B x. ( X ^ 2 ) ) + ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) ) + ( ( Q x. Y ) + R ) ) = ( ( B x. ( X ^ 2 ) ) + ( ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) + ( ( Q x. Y ) + R ) ) ) ) |
| 192 |
1 2
|
mulcld |
|- ( ph -> ( A x. B ) e. CC ) |
| 193 |
192
|
halfcld |
|- ( ph -> ( ( A x. B ) / 2 ) e. CC ) |
| 194 |
193 134
|
subcld |
|- ( ph -> ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) e. CC ) |
| 195 |
194 8
|
mulcld |
|- ( ph -> ( ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) x. X ) e. CC ) |
| 196 |
150 30
|
mulcld |
|- ( ph -> ( P x. ( ( A / 4 ) ^ 2 ) ) e. CC ) |
| 197 |
146 196
|
addcld |
|- ( ph -> ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) e. CC ) |
| 198 |
159 8
|
mulcld |
|- ( ph -> ( Q x. X ) e. CC ) |
| 199 |
159 15
|
mulcld |
|- ( ph -> ( Q x. ( A / 4 ) ) e. CC ) |
| 200 |
199 161
|
addcld |
|- ( ph -> ( ( Q x. ( A / 4 ) ) + R ) e. CC ) |
| 201 |
195 197 198 200
|
add4d |
|- ( ph -> ( ( ( ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) x. X ) + ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) ) + ( ( Q x. X ) + ( ( Q x. ( A / 4 ) ) + R ) ) ) = ( ( ( ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) x. X ) + ( Q x. X ) ) + ( ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) + ( ( Q x. ( A / 4 ) ) + R ) ) ) ) |
| 202 |
150 169 30
|
adddid |
|- ( ph -> ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) = ( ( P x. ( 2 x. ( X x. ( A / 4 ) ) ) ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) ) |
| 203 |
202
|
oveq2d |
|- ( ph -> ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) = ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) + ( ( P x. ( 2 x. ( X x. ( A / 4 ) ) ) ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) ) ) |
| 204 |
150 169
|
mulcld |
|- ( ph -> ( P x. ( 2 x. ( X x. ( A / 4 ) ) ) ) e. CC ) |
| 205 |
136 146 204 196
|
add4d |
|- ( ph -> ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) + ( ( P x. ( 2 x. ( X x. ( A / 4 ) ) ) ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) ) = ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( P x. ( 2 x. ( X x. ( A / 4 ) ) ) ) ) + ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) ) ) |
| 206 |
1 95 95 98 98
|
divdiv1d |
|- ( ph -> ( ( A / 2 ) / 2 ) = ( A / ( 2 x. 2 ) ) ) |
| 207 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
| 208 |
207
|
oveq2i |
|- ( A / ( 2 x. 2 ) ) = ( A / 4 ) |
| 209 |
206 208
|
eqtrdi |
|- ( ph -> ( ( A / 2 ) / 2 ) = ( A / 4 ) ) |
| 210 |
209
|
oveq2d |
|- ( ph -> ( 2 x. ( ( A / 2 ) / 2 ) ) = ( 2 x. ( A / 4 ) ) ) |
| 211 |
1
|
halfcld |
|- ( ph -> ( A / 2 ) e. CC ) |
| 212 |
211 95 98
|
divcan2d |
|- ( ph -> ( 2 x. ( ( A / 2 ) / 2 ) ) = ( A / 2 ) ) |
| 213 |
210 212
|
eqtr3d |
|- ( ph -> ( 2 x. ( A / 4 ) ) = ( A / 2 ) ) |
| 214 |
213
|
oveq2d |
|- ( ph -> ( X x. ( 2 x. ( A / 4 ) ) ) = ( X x. ( A / 2 ) ) ) |
| 215 |
8 211
|
mulcomd |
|- ( ph -> ( X x. ( A / 2 ) ) = ( ( A / 2 ) x. X ) ) |
| 216 |
214 215
|
eqtrd |
|- ( ph -> ( X x. ( 2 x. ( A / 4 ) ) ) = ( ( A / 2 ) x. X ) ) |
| 217 |
216
|
oveq2d |
|- ( ph -> ( P x. ( X x. ( 2 x. ( A / 4 ) ) ) ) = ( P x. ( ( A / 2 ) x. X ) ) ) |
| 218 |
95 8 15
|
mul12d |
|- ( ph -> ( 2 x. ( X x. ( A / 4 ) ) ) = ( X x. ( 2 x. ( A / 4 ) ) ) ) |
| 219 |
218
|
oveq2d |
|- ( ph -> ( P x. ( 2 x. ( X x. ( A / 4 ) ) ) ) = ( P x. ( X x. ( 2 x. ( A / 4 ) ) ) ) ) |
| 220 |
150 211 8
|
mulassd |
|- ( ph -> ( ( P x. ( A / 2 ) ) x. X ) = ( P x. ( ( A / 2 ) x. X ) ) ) |
| 221 |
217 219 220
|
3eqtr4d |
|- ( ph -> ( P x. ( 2 x. ( X x. ( A / 4 ) ) ) ) = ( ( P x. ( A / 2 ) ) x. X ) ) |
| 222 |
221
|
oveq2d |
|- ( ph -> ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( P x. ( 2 x. ( X x. ( A / 4 ) ) ) ) ) = ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( P x. ( A / 2 ) ) x. X ) ) ) |
| 223 |
150 211
|
mulcld |
|- ( ph -> ( P x. ( A / 2 ) ) e. CC ) |
| 224 |
135 223 8
|
adddird |
|- ( ph -> ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) + ( P x. ( A / 2 ) ) ) x. X ) = ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( P x. ( A / 2 ) ) x. X ) ) ) |
| 225 |
5
|
oveq1d |
|- ( ph -> ( P x. ( A / 2 ) ) = ( ( B - ( ( 3 / 8 ) x. ( A ^ 2 ) ) ) x. ( A / 2 ) ) ) |
| 226 |
2 132 211
|
subdird |
|- ( ph -> ( ( B - ( ( 3 / 8 ) x. ( A ^ 2 ) ) ) x. ( A / 2 ) ) = ( ( B x. ( A / 2 ) ) - ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( A / 2 ) ) ) ) |
| 227 |
2 1 95 98
|
divassd |
|- ( ph -> ( ( B x. A ) / 2 ) = ( B x. ( A / 2 ) ) ) |
| 228 |
2 1
|
mulcomd |
|- ( ph -> ( B x. A ) = ( A x. B ) ) |
| 229 |
228
|
oveq1d |
|- ( ph -> ( ( B x. A ) / 2 ) = ( ( A x. B ) / 2 ) ) |
| 230 |
227 229
|
eqtr3d |
|- ( ph -> ( B x. ( A / 2 ) ) = ( ( A x. B ) / 2 ) ) |
| 231 |
78
|
oveq2i |
|- ( A ^ 3 ) = ( A ^ ( 2 + 1 ) ) |
| 232 |
|
expp1 |
|- ( ( A e. CC /\ 2 e. NN0 ) -> ( A ^ ( 2 + 1 ) ) = ( ( A ^ 2 ) x. A ) ) |
| 233 |
1 80 232
|
sylancl |
|- ( ph -> ( A ^ ( 2 + 1 ) ) = ( ( A ^ 2 ) x. A ) ) |
| 234 |
231 233
|
eqtrid |
|- ( ph -> ( A ^ 3 ) = ( ( A ^ 2 ) x. A ) ) |
| 235 |
234
|
oveq2d |
|- ( ph -> ( ( 3 / 8 ) x. ( A ^ 3 ) ) = ( ( 3 / 8 ) x. ( ( A ^ 2 ) x. A ) ) ) |
| 236 |
33
|
a1i |
|- ( ph -> 3 e. CC ) |
| 237 |
236 89 94 96
|
div23d |
|- ( ph -> ( ( 3 x. ( A ^ 3 ) ) / 8 ) = ( ( 3 / 8 ) x. ( A ^ 3 ) ) ) |
| 238 |
58
|
a1i |
|- ( ph -> ( 3 / 8 ) e. CC ) |
| 239 |
238 49 1
|
mulassd |
|- ( ph -> ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. A ) = ( ( 3 / 8 ) x. ( ( A ^ 2 ) x. A ) ) ) |
| 240 |
235 237 239
|
3eqtr4rd |
|- ( ph -> ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. A ) = ( ( 3 x. ( A ^ 3 ) ) / 8 ) ) |
| 241 |
236 89 94 96
|
divassd |
|- ( ph -> ( ( 3 x. ( A ^ 3 ) ) / 8 ) = ( 3 x. ( ( A ^ 3 ) / 8 ) ) ) |
| 242 |
240 241
|
eqtrd |
|- ( ph -> ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. A ) = ( 3 x. ( ( A ^ 3 ) / 8 ) ) ) |
| 243 |
242
|
oveq1d |
|- ( ph -> ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. A ) / 2 ) = ( ( 3 x. ( ( A ^ 3 ) / 8 ) ) / 2 ) ) |
| 244 |
132 1 95 98
|
divassd |
|- ( ph -> ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. A ) / 2 ) = ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( A / 2 ) ) ) |
| 245 |
236 134 95 98
|
divassd |
|- ( ph -> ( ( 3 x. ( ( A ^ 3 ) / 8 ) ) / 2 ) = ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) ) |
| 246 |
243 244 245
|
3eqtr3d |
|- ( ph -> ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( A / 2 ) ) = ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) ) |
| 247 |
230 246
|
oveq12d |
|- ( ph -> ( ( B x. ( A / 2 ) ) - ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( A / 2 ) ) ) = ( ( ( A x. B ) / 2 ) - ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) ) ) |
| 248 |
225 226 247
|
3eqtrd |
|- ( ph -> ( P x. ( A / 2 ) ) = ( ( ( A x. B ) / 2 ) - ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) ) ) |
| 249 |
248
|
oveq2d |
|- ( ph -> ( ( ( ( A ^ 3 ) / 8 ) / 2 ) + ( P x. ( A / 2 ) ) ) = ( ( ( ( A ^ 3 ) / 8 ) / 2 ) + ( ( ( A x. B ) / 2 ) - ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) ) ) ) |
| 250 |
|
mulcl |
|- ( ( 3 e. CC /\ ( ( ( A ^ 3 ) / 8 ) / 2 ) e. CC ) -> ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) e. CC ) |
| 251 |
33 135 250
|
sylancr |
|- ( ph -> ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) e. CC ) |
| 252 |
135 193 251
|
addsub12d |
|- ( ph -> ( ( ( ( A ^ 3 ) / 8 ) / 2 ) + ( ( ( A x. B ) / 2 ) - ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) ) ) = ( ( ( A x. B ) / 2 ) + ( ( ( ( A ^ 3 ) / 8 ) / 2 ) - ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) ) ) ) |
| 253 |
193 251 135
|
subsub2d |
|- ( ph -> ( ( ( A x. B ) / 2 ) - ( ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) - ( ( ( A ^ 3 ) / 8 ) / 2 ) ) ) = ( ( ( A x. B ) / 2 ) + ( ( ( ( A ^ 3 ) / 8 ) / 2 ) - ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) ) ) ) |
| 254 |
135
|
mullidd |
|- ( ph -> ( 1 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) = ( ( ( A ^ 3 ) / 8 ) / 2 ) ) |
| 255 |
254
|
oveq2d |
|- ( ph -> ( ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) - ( 1 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) ) = ( ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) - ( ( ( A ^ 3 ) / 8 ) / 2 ) ) ) |
| 256 |
|
3m1e2 |
|- ( 3 - 1 ) = 2 |
| 257 |
256
|
oveq1i |
|- ( ( 3 - 1 ) x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) = ( 2 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) |
| 258 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 259 |
236 258 135
|
subdird |
|- ( ph -> ( ( 3 - 1 ) x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) = ( ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) - ( 1 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) ) ) |
| 260 |
134 95 98
|
divcan2d |
|- ( ph -> ( 2 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) = ( ( A ^ 3 ) / 8 ) ) |
| 261 |
257 259 260
|
3eqtr3a |
|- ( ph -> ( ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) - ( 1 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) ) = ( ( A ^ 3 ) / 8 ) ) |
| 262 |
255 261
|
eqtr3d |
|- ( ph -> ( ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) - ( ( ( A ^ 3 ) / 8 ) / 2 ) ) = ( ( A ^ 3 ) / 8 ) ) |
| 263 |
262
|
oveq2d |
|- ( ph -> ( ( ( A x. B ) / 2 ) - ( ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) - ( ( ( A ^ 3 ) / 8 ) / 2 ) ) ) = ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) ) |
| 264 |
252 253 263
|
3eqtr2d |
|- ( ph -> ( ( ( ( A ^ 3 ) / 8 ) / 2 ) + ( ( ( A x. B ) / 2 ) - ( 3 x. ( ( ( A ^ 3 ) / 8 ) / 2 ) ) ) ) = ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) ) |
| 265 |
249 264
|
eqtrd |
|- ( ph -> ( ( ( ( A ^ 3 ) / 8 ) / 2 ) + ( P x. ( A / 2 ) ) ) = ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) ) |
| 266 |
265
|
oveq1d |
|- ( ph -> ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) + ( P x. ( A / 2 ) ) ) x. X ) = ( ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) x. X ) ) |
| 267 |
222 224 266
|
3eqtr2d |
|- ( ph -> ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( P x. ( 2 x. ( X x. ( A / 4 ) ) ) ) ) = ( ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) x. X ) ) |
| 268 |
267
|
oveq1d |
|- ( ph -> ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( P x. ( 2 x. ( X x. ( A / 4 ) ) ) ) ) + ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) ) = ( ( ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) x. X ) + ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) ) ) |
| 269 |
203 205 268
|
3eqtrd |
|- ( ph -> ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) = ( ( ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) x. X ) + ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) ) ) |
| 270 |
9
|
oveq2d |
|- ( ph -> ( Q x. Y ) = ( Q x. ( X + ( A / 4 ) ) ) ) |
| 271 |
159 8 15
|
adddid |
|- ( ph -> ( Q x. ( X + ( A / 4 ) ) ) = ( ( Q x. X ) + ( Q x. ( A / 4 ) ) ) ) |
| 272 |
270 271
|
eqtrd |
|- ( ph -> ( Q x. Y ) = ( ( Q x. X ) + ( Q x. ( A / 4 ) ) ) ) |
| 273 |
272
|
oveq1d |
|- ( ph -> ( ( Q x. Y ) + R ) = ( ( ( Q x. X ) + ( Q x. ( A / 4 ) ) ) + R ) ) |
| 274 |
198 199 161
|
addassd |
|- ( ph -> ( ( ( Q x. X ) + ( Q x. ( A / 4 ) ) ) + R ) = ( ( Q x. X ) + ( ( Q x. ( A / 4 ) ) + R ) ) ) |
| 275 |
273 274
|
eqtrd |
|- ( ph -> ( ( Q x. Y ) + R ) = ( ( Q x. X ) + ( ( Q x. ( A / 4 ) ) + R ) ) ) |
| 276 |
269 275
|
oveq12d |
|- ( ph -> ( ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) + ( ( Q x. Y ) + R ) ) = ( ( ( ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) x. X ) + ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) ) + ( ( Q x. X ) + ( ( Q x. ( A / 4 ) ) + R ) ) ) ) |
| 277 |
194 159
|
addcomd |
|- ( ph -> ( ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) + Q ) = ( Q + ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) ) ) |
| 278 |
6
|
oveq1d |
|- ( ph -> ( Q + ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) ) = ( ( ( C - ( ( A x. B ) / 2 ) ) + ( ( A ^ 3 ) / 8 ) ) + ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) ) ) |
| 279 |
3 193
|
subcld |
|- ( ph -> ( C - ( ( A x. B ) / 2 ) ) e. CC ) |
| 280 |
279 134 193
|
ppncand |
|- ( ph -> ( ( ( C - ( ( A x. B ) / 2 ) ) + ( ( A ^ 3 ) / 8 ) ) + ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) ) = ( ( C - ( ( A x. B ) / 2 ) ) + ( ( A x. B ) / 2 ) ) ) |
| 281 |
3 193
|
npcand |
|- ( ph -> ( ( C - ( ( A x. B ) / 2 ) ) + ( ( A x. B ) / 2 ) ) = C ) |
| 282 |
280 281
|
eqtrd |
|- ( ph -> ( ( ( C - ( ( A x. B ) / 2 ) ) + ( ( A ^ 3 ) / 8 ) ) + ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) ) = C ) |
| 283 |
277 278 282
|
3eqtrd |
|- ( ph -> ( ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) + Q ) = C ) |
| 284 |
283
|
oveq1d |
|- ( ph -> ( ( ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) + Q ) x. X ) = ( C x. X ) ) |
| 285 |
194 159 8
|
adddird |
|- ( ph -> ( ( ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) + Q ) x. X ) = ( ( ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) x. X ) + ( Q x. X ) ) ) |
| 286 |
284 285
|
eqtr3d |
|- ( ph -> ( C x. X ) = ( ( ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) x. X ) + ( Q x. X ) ) ) |
| 287 |
1 2 3 4 5 6 7 8 9
|
quart1lem |
|- ( ph -> D = ( ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) + ( ( Q x. ( A / 4 ) ) + R ) ) ) |
| 288 |
286 287
|
oveq12d |
|- ( ph -> ( ( C x. X ) + D ) = ( ( ( ( ( ( A x. B ) / 2 ) - ( ( A ^ 3 ) / 8 ) ) x. X ) + ( Q x. X ) ) + ( ( ( ( A ^ 4 ) / ; ; 2 5 6 ) + ( P x. ( ( A / 4 ) ^ 2 ) ) ) + ( ( Q x. ( A / 4 ) ) + R ) ) ) ) |
| 289 |
201 276 288
|
3eqtr4d |
|- ( ph -> ( ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) + ( ( Q x. Y ) + R ) ) = ( ( C x. X ) + D ) ) |
| 290 |
289
|
oveq2d |
|- ( ph -> ( ( B x. ( X ^ 2 ) ) + ( ( ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) + ( P x. ( ( 2 x. ( X x. ( A / 4 ) ) ) + ( ( A / 4 ) ^ 2 ) ) ) ) + ( ( Q x. Y ) + R ) ) ) = ( ( B x. ( X ^ 2 ) ) + ( ( C x. X ) + D ) ) ) |
| 291 |
188 191 290
|
3eqtrd |
|- ( ph -> ( ( ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) + ( P x. ( Y ^ 2 ) ) ) + ( ( Q x. Y ) + R ) ) = ( ( B x. ( X ^ 2 ) ) + ( ( C x. X ) + D ) ) ) |
| 292 |
291
|
oveq2d |
|- ( ph -> ( ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) + ( ( ( ( ( ( 3 / 8 ) x. ( A ^ 2 ) ) x. ( X ^ 2 ) ) + ( ( ( ( ( A ^ 3 ) / 8 ) / 2 ) x. X ) + ( ( A ^ 4 ) / ; ; 2 5 6 ) ) ) + ( P x. ( Y ^ 2 ) ) ) + ( ( Q x. Y ) + R ) ) ) = ( ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) + ( ( B x. ( X ^ 2 ) ) + ( ( C x. X ) + D ) ) ) ) |
| 293 |
157 163 292
|
3eqtrrd |
|- ( ph -> ( ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) + ( ( B x. ( X ^ 2 ) ) + ( ( C x. X ) + D ) ) ) = ( ( ( Y ^ 4 ) + ( P x. ( Y ^ 2 ) ) ) + ( ( Q x. Y ) + R ) ) ) |