| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rankxpl.1 |
|- A e. _V |
| 2 |
|
rankxpl.2 |
|- B e. _V |
| 3 |
|
mapsspw |
|- ( A ^m B ) C_ ~P ( B X. A ) |
| 4 |
2 1
|
xpex |
|- ( B X. A ) e. _V |
| 5 |
4
|
pwex |
|- ~P ( B X. A ) e. _V |
| 6 |
5
|
rankss |
|- ( ( A ^m B ) C_ ~P ( B X. A ) -> ( rank ` ( A ^m B ) ) C_ ( rank ` ~P ( B X. A ) ) ) |
| 7 |
3 6
|
ax-mp |
|- ( rank ` ( A ^m B ) ) C_ ( rank ` ~P ( B X. A ) ) |
| 8 |
4
|
rankpw |
|- ( rank ` ~P ( B X. A ) ) = suc ( rank ` ( B X. A ) ) |
| 9 |
2 1
|
rankxpu |
|- ( rank ` ( B X. A ) ) C_ suc suc ( rank ` ( B u. A ) ) |
| 10 |
|
uncom |
|- ( B u. A ) = ( A u. B ) |
| 11 |
10
|
fveq2i |
|- ( rank ` ( B u. A ) ) = ( rank ` ( A u. B ) ) |
| 12 |
|
suceq |
|- ( ( rank ` ( B u. A ) ) = ( rank ` ( A u. B ) ) -> suc ( rank ` ( B u. A ) ) = suc ( rank ` ( A u. B ) ) ) |
| 13 |
11 12
|
ax-mp |
|- suc ( rank ` ( B u. A ) ) = suc ( rank ` ( A u. B ) ) |
| 14 |
|
suceq |
|- ( suc ( rank ` ( B u. A ) ) = suc ( rank ` ( A u. B ) ) -> suc suc ( rank ` ( B u. A ) ) = suc suc ( rank ` ( A u. B ) ) ) |
| 15 |
13 14
|
ax-mp |
|- suc suc ( rank ` ( B u. A ) ) = suc suc ( rank ` ( A u. B ) ) |
| 16 |
9 15
|
sseqtri |
|- ( rank ` ( B X. A ) ) C_ suc suc ( rank ` ( A u. B ) ) |
| 17 |
|
rankon |
|- ( rank ` ( B X. A ) ) e. On |
| 18 |
17
|
onordi |
|- Ord ( rank ` ( B X. A ) ) |
| 19 |
|
rankon |
|- ( rank ` ( A u. B ) ) e. On |
| 20 |
19
|
onsuci |
|- suc ( rank ` ( A u. B ) ) e. On |
| 21 |
20
|
onsuci |
|- suc suc ( rank ` ( A u. B ) ) e. On |
| 22 |
21
|
onordi |
|- Ord suc suc ( rank ` ( A u. B ) ) |
| 23 |
|
ordsucsssuc |
|- ( ( Ord ( rank ` ( B X. A ) ) /\ Ord suc suc ( rank ` ( A u. B ) ) ) -> ( ( rank ` ( B X. A ) ) C_ suc suc ( rank ` ( A u. B ) ) <-> suc ( rank ` ( B X. A ) ) C_ suc suc suc ( rank ` ( A u. B ) ) ) ) |
| 24 |
18 22 23
|
mp2an |
|- ( ( rank ` ( B X. A ) ) C_ suc suc ( rank ` ( A u. B ) ) <-> suc ( rank ` ( B X. A ) ) C_ suc suc suc ( rank ` ( A u. B ) ) ) |
| 25 |
16 24
|
mpbi |
|- suc ( rank ` ( B X. A ) ) C_ suc suc suc ( rank ` ( A u. B ) ) |
| 26 |
8 25
|
eqsstri |
|- ( rank ` ~P ( B X. A ) ) C_ suc suc suc ( rank ` ( A u. B ) ) |
| 27 |
7 26
|
sstri |
|- ( rank ` ( A ^m B ) ) C_ suc suc suc ( rank ` ( A u. B ) ) |