| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltp1 |  |-  ( A e. RR -> A < ( A + 1 ) ) | 
						
							| 2 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 3 |  | ax-1cn |  |-  1 e. CC | 
						
							| 4 |  | addcom |  |-  ( ( A e. CC /\ 1 e. CC ) -> ( A + 1 ) = ( 1 + A ) ) | 
						
							| 5 | 2 3 4 | sylancl |  |-  ( A e. RR -> ( A + 1 ) = ( 1 + A ) ) | 
						
							| 6 | 1 5 | breqtrd |  |-  ( A e. RR -> A < ( 1 + A ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( A e. RR /\ 0 <_ A ) -> A < ( 1 + A ) ) | 
						
							| 8 | 2 | adantr |  |-  ( ( A e. RR /\ 0 <_ A ) -> A e. CC ) | 
						
							| 9 |  | 1re |  |-  1 e. RR | 
						
							| 10 |  | readdcl |  |-  ( ( 1 e. RR /\ A e. RR ) -> ( 1 + A ) e. RR ) | 
						
							| 11 | 9 10 | mpan |  |-  ( A e. RR -> ( 1 + A ) e. RR ) | 
						
							| 12 | 11 | adantr |  |-  ( ( A e. RR /\ 0 <_ A ) -> ( 1 + A ) e. RR ) | 
						
							| 13 | 12 | recnd |  |-  ( ( A e. RR /\ 0 <_ A ) -> ( 1 + A ) e. CC ) | 
						
							| 14 |  | 0lt1 |  |-  0 < 1 | 
						
							| 15 |  | addgtge0 |  |-  ( ( ( 1 e. RR /\ A e. RR ) /\ ( 0 < 1 /\ 0 <_ A ) ) -> 0 < ( 1 + A ) ) | 
						
							| 16 | 14 15 | mpanr1 |  |-  ( ( ( 1 e. RR /\ A e. RR ) /\ 0 <_ A ) -> 0 < ( 1 + A ) ) | 
						
							| 17 | 9 16 | mpanl1 |  |-  ( ( A e. RR /\ 0 <_ A ) -> 0 < ( 1 + A ) ) | 
						
							| 18 | 17 | gt0ne0d |  |-  ( ( A e. RR /\ 0 <_ A ) -> ( 1 + A ) =/= 0 ) | 
						
							| 19 | 8 13 18 | divcan1d |  |-  ( ( A e. RR /\ 0 <_ A ) -> ( ( A / ( 1 + A ) ) x. ( 1 + A ) ) = A ) | 
						
							| 20 | 11 | recnd |  |-  ( A e. RR -> ( 1 + A ) e. CC ) | 
						
							| 21 | 20 | mullidd |  |-  ( A e. RR -> ( 1 x. ( 1 + A ) ) = ( 1 + A ) ) | 
						
							| 22 | 21 | adantr |  |-  ( ( A e. RR /\ 0 <_ A ) -> ( 1 x. ( 1 + A ) ) = ( 1 + A ) ) | 
						
							| 23 | 7 19 22 | 3brtr4d |  |-  ( ( A e. RR /\ 0 <_ A ) -> ( ( A / ( 1 + A ) ) x. ( 1 + A ) ) < ( 1 x. ( 1 + A ) ) ) | 
						
							| 24 |  | simpl |  |-  ( ( A e. RR /\ 0 <_ A ) -> A e. RR ) | 
						
							| 25 | 24 12 18 | redivcld |  |-  ( ( A e. RR /\ 0 <_ A ) -> ( A / ( 1 + A ) ) e. RR ) | 
						
							| 26 |  | ltmul1 |  |-  ( ( ( A / ( 1 + A ) ) e. RR /\ 1 e. RR /\ ( ( 1 + A ) e. RR /\ 0 < ( 1 + A ) ) ) -> ( ( A / ( 1 + A ) ) < 1 <-> ( ( A / ( 1 + A ) ) x. ( 1 + A ) ) < ( 1 x. ( 1 + A ) ) ) ) | 
						
							| 27 | 9 26 | mp3an2 |  |-  ( ( ( A / ( 1 + A ) ) e. RR /\ ( ( 1 + A ) e. RR /\ 0 < ( 1 + A ) ) ) -> ( ( A / ( 1 + A ) ) < 1 <-> ( ( A / ( 1 + A ) ) x. ( 1 + A ) ) < ( 1 x. ( 1 + A ) ) ) ) | 
						
							| 28 | 25 12 17 27 | syl12anc |  |-  ( ( A e. RR /\ 0 <_ A ) -> ( ( A / ( 1 + A ) ) < 1 <-> ( ( A / ( 1 + A ) ) x. ( 1 + A ) ) < ( 1 x. ( 1 + A ) ) ) ) | 
						
							| 29 | 23 28 | mpbird |  |-  ( ( A e. RR /\ 0 <_ A ) -> ( A / ( 1 + A ) ) < 1 ) |