| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recgt0 |  |-  ( ( A e. RR /\ 0 < A ) -> 0 < ( 1 / A ) ) | 
						
							| 2 |  | gt0ne0 |  |-  ( ( A e. RR /\ 0 < A ) -> A =/= 0 ) | 
						
							| 3 |  | rereccl |  |-  ( ( A e. RR /\ A =/= 0 ) -> ( 1 / A ) e. RR ) | 
						
							| 4 | 2 3 | syldan |  |-  ( ( A e. RR /\ 0 < A ) -> ( 1 / A ) e. RR ) | 
						
							| 5 |  | 1re |  |-  1 e. RR | 
						
							| 6 |  | ltaddpos |  |-  ( ( ( 1 / A ) e. RR /\ 1 e. RR ) -> ( 0 < ( 1 / A ) <-> 1 < ( 1 + ( 1 / A ) ) ) ) | 
						
							| 7 | 4 5 6 | sylancl |  |-  ( ( A e. RR /\ 0 < A ) -> ( 0 < ( 1 / A ) <-> 1 < ( 1 + ( 1 / A ) ) ) ) | 
						
							| 8 | 1 7 | mpbid |  |-  ( ( A e. RR /\ 0 < A ) -> 1 < ( 1 + ( 1 / A ) ) ) | 
						
							| 9 |  | readdcl |  |-  ( ( 1 e. RR /\ ( 1 / A ) e. RR ) -> ( 1 + ( 1 / A ) ) e. RR ) | 
						
							| 10 | 5 4 9 | sylancr |  |-  ( ( A e. RR /\ 0 < A ) -> ( 1 + ( 1 / A ) ) e. RR ) | 
						
							| 11 |  | 0lt1 |  |-  0 < 1 | 
						
							| 12 |  | 0re |  |-  0 e. RR | 
						
							| 13 |  | lttr |  |-  ( ( 0 e. RR /\ 1 e. RR /\ ( 1 + ( 1 / A ) ) e. RR ) -> ( ( 0 < 1 /\ 1 < ( 1 + ( 1 / A ) ) ) -> 0 < ( 1 + ( 1 / A ) ) ) ) | 
						
							| 14 | 12 5 10 13 | mp3an12i |  |-  ( ( A e. RR /\ 0 < A ) -> ( ( 0 < 1 /\ 1 < ( 1 + ( 1 / A ) ) ) -> 0 < ( 1 + ( 1 / A ) ) ) ) | 
						
							| 15 | 11 14 | mpani |  |-  ( ( A e. RR /\ 0 < A ) -> ( 1 < ( 1 + ( 1 / A ) ) -> 0 < ( 1 + ( 1 / A ) ) ) ) | 
						
							| 16 | 8 15 | mpd |  |-  ( ( A e. RR /\ 0 < A ) -> 0 < ( 1 + ( 1 / A ) ) ) | 
						
							| 17 |  | recgt1 |  |-  ( ( ( 1 + ( 1 / A ) ) e. RR /\ 0 < ( 1 + ( 1 / A ) ) ) -> ( 1 < ( 1 + ( 1 / A ) ) <-> ( 1 / ( 1 + ( 1 / A ) ) ) < 1 ) ) | 
						
							| 18 | 10 16 17 | syl2anc |  |-  ( ( A e. RR /\ 0 < A ) -> ( 1 < ( 1 + ( 1 / A ) ) <-> ( 1 / ( 1 + ( 1 / A ) ) ) < 1 ) ) | 
						
							| 19 | 8 18 | mpbid |  |-  ( ( A e. RR /\ 0 < A ) -> ( 1 / ( 1 + ( 1 / A ) ) ) < 1 ) | 
						
							| 20 |  | ltaddpos |  |-  ( ( 1 e. RR /\ ( 1 / A ) e. RR ) -> ( 0 < 1 <-> ( 1 / A ) < ( ( 1 / A ) + 1 ) ) ) | 
						
							| 21 | 5 4 20 | sylancr |  |-  ( ( A e. RR /\ 0 < A ) -> ( 0 < 1 <-> ( 1 / A ) < ( ( 1 / A ) + 1 ) ) ) | 
						
							| 22 | 11 21 | mpbii |  |-  ( ( A e. RR /\ 0 < A ) -> ( 1 / A ) < ( ( 1 / A ) + 1 ) ) | 
						
							| 23 | 4 | recnd |  |-  ( ( A e. RR /\ 0 < A ) -> ( 1 / A ) e. CC ) | 
						
							| 24 |  | ax-1cn |  |-  1 e. CC | 
						
							| 25 |  | addcom |  |-  ( ( ( 1 / A ) e. CC /\ 1 e. CC ) -> ( ( 1 / A ) + 1 ) = ( 1 + ( 1 / A ) ) ) | 
						
							| 26 | 23 24 25 | sylancl |  |-  ( ( A e. RR /\ 0 < A ) -> ( ( 1 / A ) + 1 ) = ( 1 + ( 1 / A ) ) ) | 
						
							| 27 | 22 26 | breqtrd |  |-  ( ( A e. RR /\ 0 < A ) -> ( 1 / A ) < ( 1 + ( 1 / A ) ) ) | 
						
							| 28 |  | simpl |  |-  ( ( A e. RR /\ 0 < A ) -> A e. RR ) | 
						
							| 29 |  | simpr |  |-  ( ( A e. RR /\ 0 < A ) -> 0 < A ) | 
						
							| 30 |  | ltrec1 |  |-  ( ( ( A e. RR /\ 0 < A ) /\ ( ( 1 + ( 1 / A ) ) e. RR /\ 0 < ( 1 + ( 1 / A ) ) ) ) -> ( ( 1 / A ) < ( 1 + ( 1 / A ) ) <-> ( 1 / ( 1 + ( 1 / A ) ) ) < A ) ) | 
						
							| 31 | 28 29 10 16 30 | syl22anc |  |-  ( ( A e. RR /\ 0 < A ) -> ( ( 1 / A ) < ( 1 + ( 1 / A ) ) <-> ( 1 / ( 1 + ( 1 / A ) ) ) < A ) ) | 
						
							| 32 | 27 31 | mpbid |  |-  ( ( A e. RR /\ 0 < A ) -> ( 1 / ( 1 + ( 1 / A ) ) ) < A ) | 
						
							| 33 | 19 32 | jca |  |-  ( ( A e. RR /\ 0 < A ) -> ( ( 1 / ( 1 + ( 1 / A ) ) ) < 1 /\ ( 1 / ( 1 + ( 1 / A ) ) ) < A ) ) |