Metamath Proof Explorer


Theorem reldmlan2

Description: The domain of ( P Lan E ) is a relation. (Contributed by Zhi Wang, 3-Nov-2025)

Ref Expression
Assertion reldmlan2
|- Rel dom ( P Lan E )

Proof

Step Hyp Ref Expression
1 rel0
 |-  Rel (/)
2 df-ov
 |-  ( P Lan E ) = ( Lan ` <. P , E >. )
3 id
 |-  ( ( Lan ` <. P , E >. ) = (/) -> ( Lan ` <. P , E >. ) = (/) )
4 2 3 eqtrid
 |-  ( ( Lan ` <. P , E >. ) = (/) -> ( P Lan E ) = (/) )
5 4 dmeqd
 |-  ( ( Lan ` <. P , E >. ) = (/) -> dom ( P Lan E ) = dom (/) )
6 dm0
 |-  dom (/) = (/)
7 5 6 eqtrdi
 |-  ( ( Lan ` <. P , E >. ) = (/) -> dom ( P Lan E ) = (/) )
8 7 releqd
 |-  ( ( Lan ` <. P , E >. ) = (/) -> ( Rel dom ( P Lan E ) <-> Rel (/) ) )
9 1 8 mpbiri
 |-  ( ( Lan ` <. P , E >. ) = (/) -> Rel dom ( P Lan E ) )
10 eqid
 |-  ( f e. ( ( 1st ` P ) Func ( 2nd ` P ) ) , x e. ( ( 1st ` P ) Func E ) |-> ( ( <. ( 2nd ` P ) , E >. -o.F f ) ( ( ( 2nd ` P ) FuncCat E ) UP ( ( 1st ` P ) FuncCat E ) ) x ) ) = ( f e. ( ( 1st ` P ) Func ( 2nd ` P ) ) , x e. ( ( 1st ` P ) Func E ) |-> ( ( <. ( 2nd ` P ) , E >. -o.F f ) ( ( ( 2nd ` P ) FuncCat E ) UP ( ( 1st ` P ) FuncCat E ) ) x ) )
11 10 reldmmpo
 |-  Rel dom ( f e. ( ( 1st ` P ) Func ( 2nd ` P ) ) , x e. ( ( 1st ` P ) Func E ) |-> ( ( <. ( 2nd ` P ) , E >. -o.F f ) ( ( ( 2nd ` P ) FuncCat E ) UP ( ( 1st ` P ) FuncCat E ) ) x ) )
12 fvfundmfvn0
 |-  ( ( Lan ` <. P , E >. ) =/= (/) -> ( <. P , E >. e. dom Lan /\ Fun ( Lan |` { <. P , E >. } ) ) )
13 12 simpld
 |-  ( ( Lan ` <. P , E >. ) =/= (/) -> <. P , E >. e. dom Lan )
14 lanfn
 |-  Lan Fn ( ( _V X. _V ) X. _V )
15 14 fndmi
 |-  dom Lan = ( ( _V X. _V ) X. _V )
16 13 15 eleqtrdi
 |-  ( ( Lan ` <. P , E >. ) =/= (/) -> <. P , E >. e. ( ( _V X. _V ) X. _V ) )
17 opelxp1
 |-  ( <. P , E >. e. ( ( _V X. _V ) X. _V ) -> P e. ( _V X. _V ) )
18 1st2nd2
 |-  ( P e. ( _V X. _V ) -> P = <. ( 1st ` P ) , ( 2nd ` P ) >. )
19 16 17 18 3syl
 |-  ( ( Lan ` <. P , E >. ) =/= (/) -> P = <. ( 1st ` P ) , ( 2nd ` P ) >. )
20 19 oveq1d
 |-  ( ( Lan ` <. P , E >. ) =/= (/) -> ( P Lan E ) = ( <. ( 1st ` P ) , ( 2nd ` P ) >. Lan E ) )
21 eqid
 |-  ( ( 2nd ` P ) FuncCat E ) = ( ( 2nd ` P ) FuncCat E )
22 eqid
 |-  ( ( 1st ` P ) FuncCat E ) = ( ( 1st ` P ) FuncCat E )
23 fvexd
 |-  ( ( Lan ` <. P , E >. ) =/= (/) -> ( 1st ` P ) e. _V )
24 fvexd
 |-  ( ( Lan ` <. P , E >. ) =/= (/) -> ( 2nd ` P ) e. _V )
25 opelxp2
 |-  ( <. P , E >. e. ( ( _V X. _V ) X. _V ) -> E e. _V )
26 16 25 syl
 |-  ( ( Lan ` <. P , E >. ) =/= (/) -> E e. _V )
27 21 22 23 24 26 lanfval
 |-  ( ( Lan ` <. P , E >. ) =/= (/) -> ( <. ( 1st ` P ) , ( 2nd ` P ) >. Lan E ) = ( f e. ( ( 1st ` P ) Func ( 2nd ` P ) ) , x e. ( ( 1st ` P ) Func E ) |-> ( ( <. ( 2nd ` P ) , E >. -o.F f ) ( ( ( 2nd ` P ) FuncCat E ) UP ( ( 1st ` P ) FuncCat E ) ) x ) ) )
28 20 27 eqtrd
 |-  ( ( Lan ` <. P , E >. ) =/= (/) -> ( P Lan E ) = ( f e. ( ( 1st ` P ) Func ( 2nd ` P ) ) , x e. ( ( 1st ` P ) Func E ) |-> ( ( <. ( 2nd ` P ) , E >. -o.F f ) ( ( ( 2nd ` P ) FuncCat E ) UP ( ( 1st ` P ) FuncCat E ) ) x ) ) )
29 28 dmeqd
 |-  ( ( Lan ` <. P , E >. ) =/= (/) -> dom ( P Lan E ) = dom ( f e. ( ( 1st ` P ) Func ( 2nd ` P ) ) , x e. ( ( 1st ` P ) Func E ) |-> ( ( <. ( 2nd ` P ) , E >. -o.F f ) ( ( ( 2nd ` P ) FuncCat E ) UP ( ( 1st ` P ) FuncCat E ) ) x ) ) )
30 29 releqd
 |-  ( ( Lan ` <. P , E >. ) =/= (/) -> ( Rel dom ( P Lan E ) <-> Rel dom ( f e. ( ( 1st ` P ) Func ( 2nd ` P ) ) , x e. ( ( 1st ` P ) Func E ) |-> ( ( <. ( 2nd ` P ) , E >. -o.F f ) ( ( ( 2nd ` P ) FuncCat E ) UP ( ( 1st ` P ) FuncCat E ) ) x ) ) ) )
31 11 30 mpbiri
 |-  ( ( Lan ` <. P , E >. ) =/= (/) -> Rel dom ( P Lan E ) )
32 9 31 pm2.61ine
 |-  Rel dom ( P Lan E )