| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rel0 |
|- Rel (/) |
| 2 |
|
df-ov |
|- ( P Ran E ) = ( Ran ` <. P , E >. ) |
| 3 |
|
id |
|- ( ( Ran ` <. P , E >. ) = (/) -> ( Ran ` <. P , E >. ) = (/) ) |
| 4 |
2 3
|
eqtrid |
|- ( ( Ran ` <. P , E >. ) = (/) -> ( P Ran E ) = (/) ) |
| 5 |
4
|
dmeqd |
|- ( ( Ran ` <. P , E >. ) = (/) -> dom ( P Ran E ) = dom (/) ) |
| 6 |
|
dm0 |
|- dom (/) = (/) |
| 7 |
5 6
|
eqtrdi |
|- ( ( Ran ` <. P , E >. ) = (/) -> dom ( P Ran E ) = (/) ) |
| 8 |
7
|
releqd |
|- ( ( Ran ` <. P , E >. ) = (/) -> ( Rel dom ( P Ran E ) <-> Rel (/) ) ) |
| 9 |
1 8
|
mpbiri |
|- ( ( Ran ` <. P , E >. ) = (/) -> Rel dom ( P Ran E ) ) |
| 10 |
|
eqid |
|- ( f e. ( ( 1st ` P ) Func ( 2nd ` P ) ) , x e. ( ( 1st ` P ) Func E ) |-> ( ( oppFunc ` ( <. ( 2nd ` P ) , E >. -o.F f ) ) ( ( oppCat ` ( ( 2nd ` P ) FuncCat E ) ) UP ( oppCat ` ( ( 1st ` P ) FuncCat E ) ) ) x ) ) = ( f e. ( ( 1st ` P ) Func ( 2nd ` P ) ) , x e. ( ( 1st ` P ) Func E ) |-> ( ( oppFunc ` ( <. ( 2nd ` P ) , E >. -o.F f ) ) ( ( oppCat ` ( ( 2nd ` P ) FuncCat E ) ) UP ( oppCat ` ( ( 1st ` P ) FuncCat E ) ) ) x ) ) |
| 11 |
10
|
reldmmpo |
|- Rel dom ( f e. ( ( 1st ` P ) Func ( 2nd ` P ) ) , x e. ( ( 1st ` P ) Func E ) |-> ( ( oppFunc ` ( <. ( 2nd ` P ) , E >. -o.F f ) ) ( ( oppCat ` ( ( 2nd ` P ) FuncCat E ) ) UP ( oppCat ` ( ( 1st ` P ) FuncCat E ) ) ) x ) ) |
| 12 |
|
fvfundmfvn0 |
|- ( ( Ran ` <. P , E >. ) =/= (/) -> ( <. P , E >. e. dom Ran /\ Fun ( Ran |` { <. P , E >. } ) ) ) |
| 13 |
12
|
simpld |
|- ( ( Ran ` <. P , E >. ) =/= (/) -> <. P , E >. e. dom Ran ) |
| 14 |
|
ranfn |
|- Ran Fn ( ( _V X. _V ) X. _V ) |
| 15 |
14
|
fndmi |
|- dom Ran = ( ( _V X. _V ) X. _V ) |
| 16 |
13 15
|
eleqtrdi |
|- ( ( Ran ` <. P , E >. ) =/= (/) -> <. P , E >. e. ( ( _V X. _V ) X. _V ) ) |
| 17 |
|
opelxp1 |
|- ( <. P , E >. e. ( ( _V X. _V ) X. _V ) -> P e. ( _V X. _V ) ) |
| 18 |
|
1st2nd2 |
|- ( P e. ( _V X. _V ) -> P = <. ( 1st ` P ) , ( 2nd ` P ) >. ) |
| 19 |
16 17 18
|
3syl |
|- ( ( Ran ` <. P , E >. ) =/= (/) -> P = <. ( 1st ` P ) , ( 2nd ` P ) >. ) |
| 20 |
19
|
oveq1d |
|- ( ( Ran ` <. P , E >. ) =/= (/) -> ( P Ran E ) = ( <. ( 1st ` P ) , ( 2nd ` P ) >. Ran E ) ) |
| 21 |
|
eqid |
|- ( ( 2nd ` P ) FuncCat E ) = ( ( 2nd ` P ) FuncCat E ) |
| 22 |
|
eqid |
|- ( ( 1st ` P ) FuncCat E ) = ( ( 1st ` P ) FuncCat E ) |
| 23 |
|
fvexd |
|- ( ( Ran ` <. P , E >. ) =/= (/) -> ( 1st ` P ) e. _V ) |
| 24 |
|
fvexd |
|- ( ( Ran ` <. P , E >. ) =/= (/) -> ( 2nd ` P ) e. _V ) |
| 25 |
|
opelxp2 |
|- ( <. P , E >. e. ( ( _V X. _V ) X. _V ) -> E e. _V ) |
| 26 |
16 25
|
syl |
|- ( ( Ran ` <. P , E >. ) =/= (/) -> E e. _V ) |
| 27 |
|
eqid |
|- ( oppCat ` ( ( 2nd ` P ) FuncCat E ) ) = ( oppCat ` ( ( 2nd ` P ) FuncCat E ) ) |
| 28 |
|
eqid |
|- ( oppCat ` ( ( 1st ` P ) FuncCat E ) ) = ( oppCat ` ( ( 1st ` P ) FuncCat E ) ) |
| 29 |
21 22 23 24 26 27 28
|
ranfval |
|- ( ( Ran ` <. P , E >. ) =/= (/) -> ( <. ( 1st ` P ) , ( 2nd ` P ) >. Ran E ) = ( f e. ( ( 1st ` P ) Func ( 2nd ` P ) ) , x e. ( ( 1st ` P ) Func E ) |-> ( ( oppFunc ` ( <. ( 2nd ` P ) , E >. -o.F f ) ) ( ( oppCat ` ( ( 2nd ` P ) FuncCat E ) ) UP ( oppCat ` ( ( 1st ` P ) FuncCat E ) ) ) x ) ) ) |
| 30 |
20 29
|
eqtrd |
|- ( ( Ran ` <. P , E >. ) =/= (/) -> ( P Ran E ) = ( f e. ( ( 1st ` P ) Func ( 2nd ` P ) ) , x e. ( ( 1st ` P ) Func E ) |-> ( ( oppFunc ` ( <. ( 2nd ` P ) , E >. -o.F f ) ) ( ( oppCat ` ( ( 2nd ` P ) FuncCat E ) ) UP ( oppCat ` ( ( 1st ` P ) FuncCat E ) ) ) x ) ) ) |
| 31 |
30
|
dmeqd |
|- ( ( Ran ` <. P , E >. ) =/= (/) -> dom ( P Ran E ) = dom ( f e. ( ( 1st ` P ) Func ( 2nd ` P ) ) , x e. ( ( 1st ` P ) Func E ) |-> ( ( oppFunc ` ( <. ( 2nd ` P ) , E >. -o.F f ) ) ( ( oppCat ` ( ( 2nd ` P ) FuncCat E ) ) UP ( oppCat ` ( ( 1st ` P ) FuncCat E ) ) ) x ) ) ) |
| 32 |
31
|
releqd |
|- ( ( Ran ` <. P , E >. ) =/= (/) -> ( Rel dom ( P Ran E ) <-> Rel dom ( f e. ( ( 1st ` P ) Func ( 2nd ` P ) ) , x e. ( ( 1st ` P ) Func E ) |-> ( ( oppFunc ` ( <. ( 2nd ` P ) , E >. -o.F f ) ) ( ( oppCat ` ( ( 2nd ` P ) FuncCat E ) ) UP ( oppCat ` ( ( 1st ` P ) FuncCat E ) ) ) x ) ) ) ) |
| 33 |
11 32
|
mpbiri |
|- ( ( Ran ` <. P , E >. ) =/= (/) -> Rel dom ( P Ran E ) ) |
| 34 |
9 33
|
pm2.61ine |
|- Rel dom ( P Ran E ) |