Metamath Proof Explorer


Theorem relexpnnrn

Description: The range of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020)

Ref Expression
Assertion relexpnnrn
|- ( ( N e. NN /\ R e. V ) -> ran ( R ^r N ) C_ ran R )

Proof

Step Hyp Ref Expression
1 cnvexg
 |-  ( R e. V -> `' R e. _V )
2 relexpnndm
 |-  ( ( N e. NN /\ `' R e. _V ) -> dom ( `' R ^r N ) C_ dom `' R )
3 1 2 sylan2
 |-  ( ( N e. NN /\ R e. V ) -> dom ( `' R ^r N ) C_ dom `' R )
4 df-rn
 |-  ran ( R ^r N ) = dom `' ( R ^r N )
5 nnnn0
 |-  ( N e. NN -> N e. NN0 )
6 relexpcnv
 |-  ( ( N e. NN0 /\ R e. V ) -> `' ( R ^r N ) = ( `' R ^r N ) )
7 5 6 sylan
 |-  ( ( N e. NN /\ R e. V ) -> `' ( R ^r N ) = ( `' R ^r N ) )
8 7 dmeqd
 |-  ( ( N e. NN /\ R e. V ) -> dom `' ( R ^r N ) = dom ( `' R ^r N ) )
9 4 8 eqtrid
 |-  ( ( N e. NN /\ R e. V ) -> ran ( R ^r N ) = dom ( `' R ^r N ) )
10 df-rn
 |-  ran R = dom `' R
11 10 a1i
 |-  ( ( N e. NN /\ R e. V ) -> ran R = dom `' R )
12 3 9 11 3sstr4d
 |-  ( ( N e. NN /\ R e. V ) -> ran ( R ^r N ) C_ ran R )