Step |
Hyp |
Ref |
Expression |
1 |
|
cnvexg |
|- ( R e. V -> `' R e. _V ) |
2 |
|
relexpnndm |
|- ( ( N e. NN /\ `' R e. _V ) -> dom ( `' R ^r N ) C_ dom `' R ) |
3 |
1 2
|
sylan2 |
|- ( ( N e. NN /\ R e. V ) -> dom ( `' R ^r N ) C_ dom `' R ) |
4 |
|
df-rn |
|- ran ( R ^r N ) = dom `' ( R ^r N ) |
5 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
6 |
|
relexpcnv |
|- ( ( N e. NN0 /\ R e. V ) -> `' ( R ^r N ) = ( `' R ^r N ) ) |
7 |
5 6
|
sylan |
|- ( ( N e. NN /\ R e. V ) -> `' ( R ^r N ) = ( `' R ^r N ) ) |
8 |
7
|
dmeqd |
|- ( ( N e. NN /\ R e. V ) -> dom `' ( R ^r N ) = dom ( `' R ^r N ) ) |
9 |
4 8
|
eqtrid |
|- ( ( N e. NN /\ R e. V ) -> ran ( R ^r N ) = dom ( `' R ^r N ) ) |
10 |
|
df-rn |
|- ran R = dom `' R |
11 |
10
|
a1i |
|- ( ( N e. NN /\ R e. V ) -> ran R = dom `' R ) |
12 |
3 9 11
|
3sstr4d |
|- ( ( N e. NN /\ R e. V ) -> ran ( R ^r N ) C_ ran R ) |