Metamath Proof Explorer


Theorem relexpnnrn

Description: The range of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020)

Ref Expression
Assertion relexpnnrn ( ( 𝑁 ∈ ℕ ∧ 𝑅𝑉 ) → ran ( 𝑅𝑟 𝑁 ) ⊆ ran 𝑅 )

Proof

Step Hyp Ref Expression
1 cnvexg ( 𝑅𝑉 𝑅 ∈ V )
2 relexpnndm ( ( 𝑁 ∈ ℕ ∧ 𝑅 ∈ V ) → dom ( 𝑅𝑟 𝑁 ) ⊆ dom 𝑅 )
3 1 2 sylan2 ( ( 𝑁 ∈ ℕ ∧ 𝑅𝑉 ) → dom ( 𝑅𝑟 𝑁 ) ⊆ dom 𝑅 )
4 df-rn ran ( 𝑅𝑟 𝑁 ) = dom ( 𝑅𝑟 𝑁 )
5 nnnn0 ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 )
6 relexpcnv ( ( 𝑁 ∈ ℕ0𝑅𝑉 ) → ( 𝑅𝑟 𝑁 ) = ( 𝑅𝑟 𝑁 ) )
7 5 6 sylan ( ( 𝑁 ∈ ℕ ∧ 𝑅𝑉 ) → ( 𝑅𝑟 𝑁 ) = ( 𝑅𝑟 𝑁 ) )
8 7 dmeqd ( ( 𝑁 ∈ ℕ ∧ 𝑅𝑉 ) → dom ( 𝑅𝑟 𝑁 ) = dom ( 𝑅𝑟 𝑁 ) )
9 4 8 syl5eq ( ( 𝑁 ∈ ℕ ∧ 𝑅𝑉 ) → ran ( 𝑅𝑟 𝑁 ) = dom ( 𝑅𝑟 𝑁 ) )
10 df-rn ran 𝑅 = dom 𝑅
11 10 a1i ( ( 𝑁 ∈ ℕ ∧ 𝑅𝑉 ) → ran 𝑅 = dom 𝑅 )
12 3 9 11 3sstr4d ( ( 𝑁 ∈ ℕ ∧ 𝑅𝑉 ) → ran ( 𝑅𝑟 𝑁 ) ⊆ ran 𝑅 )