Step |
Hyp |
Ref |
Expression |
1 |
|
cnvexg |
⊢ ( 𝑅 ∈ 𝑉 → ◡ 𝑅 ∈ V ) |
2 |
|
relexpnndm |
⊢ ( ( 𝑁 ∈ ℕ ∧ ◡ 𝑅 ∈ V ) → dom ( ◡ 𝑅 ↑𝑟 𝑁 ) ⊆ dom ◡ 𝑅 ) |
3 |
1 2
|
sylan2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) → dom ( ◡ 𝑅 ↑𝑟 𝑁 ) ⊆ dom ◡ 𝑅 ) |
4 |
|
df-rn |
⊢ ran ( 𝑅 ↑𝑟 𝑁 ) = dom ◡ ( 𝑅 ↑𝑟 𝑁 ) |
5 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
6 |
|
relexpcnv |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ) → ◡ ( 𝑅 ↑𝑟 𝑁 ) = ( ◡ 𝑅 ↑𝑟 𝑁 ) ) |
7 |
5 6
|
sylan |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) → ◡ ( 𝑅 ↑𝑟 𝑁 ) = ( ◡ 𝑅 ↑𝑟 𝑁 ) ) |
8 |
7
|
dmeqd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) → dom ◡ ( 𝑅 ↑𝑟 𝑁 ) = dom ( ◡ 𝑅 ↑𝑟 𝑁 ) ) |
9 |
4 8
|
eqtrid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) → ran ( 𝑅 ↑𝑟 𝑁 ) = dom ( ◡ 𝑅 ↑𝑟 𝑁 ) ) |
10 |
|
df-rn |
⊢ ran 𝑅 = dom ◡ 𝑅 |
11 |
10
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) → ran 𝑅 = dom ◡ 𝑅 ) |
12 |
3 9 11
|
3sstr4d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) → ran ( 𝑅 ↑𝑟 𝑁 ) ⊆ ran 𝑅 ) |