| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl1 |
|- ( ( ( S e. A /\ N e. NN0 /\ F : A --> B ) /\ x e. ( 0 ..^ N ) ) -> S e. A ) |
| 2 |
|
simpl2 |
|- ( ( ( S e. A /\ N e. NN0 /\ F : A --> B ) /\ x e. ( 0 ..^ N ) ) -> N e. NN0 ) |
| 3 |
|
simpr |
|- ( ( ( S e. A /\ N e. NN0 /\ F : A --> B ) /\ x e. ( 0 ..^ N ) ) -> x e. ( 0 ..^ N ) ) |
| 4 |
|
repswsymb |
|- ( ( S e. A /\ N e. NN0 /\ x e. ( 0 ..^ N ) ) -> ( ( S repeatS N ) ` x ) = S ) |
| 5 |
1 2 3 4
|
syl3anc |
|- ( ( ( S e. A /\ N e. NN0 /\ F : A --> B ) /\ x e. ( 0 ..^ N ) ) -> ( ( S repeatS N ) ` x ) = S ) |
| 6 |
5
|
fveq2d |
|- ( ( ( S e. A /\ N e. NN0 /\ F : A --> B ) /\ x e. ( 0 ..^ N ) ) -> ( F ` ( ( S repeatS N ) ` x ) ) = ( F ` S ) ) |
| 7 |
6
|
mpteq2dva |
|- ( ( S e. A /\ N e. NN0 /\ F : A --> B ) -> ( x e. ( 0 ..^ N ) |-> ( F ` ( ( S repeatS N ) ` x ) ) ) = ( x e. ( 0 ..^ N ) |-> ( F ` S ) ) ) |
| 8 |
|
simp3 |
|- ( ( S e. A /\ N e. NN0 /\ F : A --> B ) -> F : A --> B ) |
| 9 |
|
repsf |
|- ( ( S e. A /\ N e. NN0 ) -> ( S repeatS N ) : ( 0 ..^ N ) --> A ) |
| 10 |
9
|
3adant3 |
|- ( ( S e. A /\ N e. NN0 /\ F : A --> B ) -> ( S repeatS N ) : ( 0 ..^ N ) --> A ) |
| 11 |
|
fcompt |
|- ( ( F : A --> B /\ ( S repeatS N ) : ( 0 ..^ N ) --> A ) -> ( F o. ( S repeatS N ) ) = ( x e. ( 0 ..^ N ) |-> ( F ` ( ( S repeatS N ) ` x ) ) ) ) |
| 12 |
8 10 11
|
syl2anc |
|- ( ( S e. A /\ N e. NN0 /\ F : A --> B ) -> ( F o. ( S repeatS N ) ) = ( x e. ( 0 ..^ N ) |-> ( F ` ( ( S repeatS N ) ` x ) ) ) ) |
| 13 |
|
fvexd |
|- ( S e. A -> ( F ` S ) e. _V ) |
| 14 |
13
|
anim1i |
|- ( ( S e. A /\ N e. NN0 ) -> ( ( F ` S ) e. _V /\ N e. NN0 ) ) |
| 15 |
14
|
3adant3 |
|- ( ( S e. A /\ N e. NN0 /\ F : A --> B ) -> ( ( F ` S ) e. _V /\ N e. NN0 ) ) |
| 16 |
|
reps |
|- ( ( ( F ` S ) e. _V /\ N e. NN0 ) -> ( ( F ` S ) repeatS N ) = ( x e. ( 0 ..^ N ) |-> ( F ` S ) ) ) |
| 17 |
15 16
|
syl |
|- ( ( S e. A /\ N e. NN0 /\ F : A --> B ) -> ( ( F ` S ) repeatS N ) = ( x e. ( 0 ..^ N ) |-> ( F ` S ) ) ) |
| 18 |
7 12 17
|
3eqtr4d |
|- ( ( S e. A /\ N e. NN0 /\ F : A --> B ) -> ( F o. ( S repeatS N ) ) = ( ( F ` S ) repeatS N ) ) |