| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resslemOLD.r |  |-  R = ( W |`s A ) | 
						
							| 2 |  | resslemOLD.e |  |-  C = ( E ` W ) | 
						
							| 3 |  | resslemOLD.f |  |-  E = Slot N | 
						
							| 4 |  | resslemOLD.n |  |-  N e. NN | 
						
							| 5 |  | resslemOLD.b |  |-  1 < N | 
						
							| 6 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 7 | 1 6 | ressid2 |  |-  ( ( ( Base ` W ) C_ A /\ W e. _V /\ A e. V ) -> R = W ) | 
						
							| 8 | 7 | fveq2d |  |-  ( ( ( Base ` W ) C_ A /\ W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) | 
						
							| 9 | 8 | 3expib |  |-  ( ( Base ` W ) C_ A -> ( ( W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) ) | 
						
							| 10 | 1 6 | ressval2 |  |-  ( ( -. ( Base ` W ) C_ A /\ W e. _V /\ A e. V ) -> R = ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) ) | 
						
							| 11 | 10 | fveq2d |  |-  ( ( -. ( Base ` W ) C_ A /\ W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) ) ) | 
						
							| 12 | 3 4 | ndxid |  |-  E = Slot ( E ` ndx ) | 
						
							| 13 | 3 4 | ndxarg |  |-  ( E ` ndx ) = N | 
						
							| 14 |  | 1re |  |-  1 e. RR | 
						
							| 15 | 14 5 | gtneii |  |-  N =/= 1 | 
						
							| 16 | 13 15 | eqnetri |  |-  ( E ` ndx ) =/= 1 | 
						
							| 17 |  | basendx |  |-  ( Base ` ndx ) = 1 | 
						
							| 18 | 16 17 | neeqtrri |  |-  ( E ` ndx ) =/= ( Base ` ndx ) | 
						
							| 19 | 12 18 | setsnid |  |-  ( E ` W ) = ( E ` ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) ) | 
						
							| 20 | 11 19 | eqtr4di |  |-  ( ( -. ( Base ` W ) C_ A /\ W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) | 
						
							| 21 | 20 | 3expib |  |-  ( -. ( Base ` W ) C_ A -> ( ( W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) ) | 
						
							| 22 | 9 21 | pm2.61i |  |-  ( ( W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) | 
						
							| 23 |  | reldmress |  |-  Rel dom |`s | 
						
							| 24 | 23 | ovprc1 |  |-  ( -. W e. _V -> ( W |`s A ) = (/) ) | 
						
							| 25 | 1 24 | eqtrid |  |-  ( -. W e. _V -> R = (/) ) | 
						
							| 26 | 25 | fveq2d |  |-  ( -. W e. _V -> ( E ` R ) = ( E ` (/) ) ) | 
						
							| 27 | 3 | str0 |  |-  (/) = ( E ` (/) ) | 
						
							| 28 | 26 27 | eqtr4di |  |-  ( -. W e. _V -> ( E ` R ) = (/) ) | 
						
							| 29 |  | fvprc |  |-  ( -. W e. _V -> ( E ` W ) = (/) ) | 
						
							| 30 | 28 29 | eqtr4d |  |-  ( -. W e. _V -> ( E ` R ) = ( E ` W ) ) | 
						
							| 31 | 30 | adantr |  |-  ( ( -. W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) | 
						
							| 32 | 22 31 | pm2.61ian |  |-  ( A e. V -> ( E ` R ) = ( E ` W ) ) | 
						
							| 33 | 2 32 | eqtr4id |  |-  ( A e. V -> C = ( E ` R ) ) |