Step |
Hyp |
Ref |
Expression |
1 |
|
resubidaddid1lem.a |
|- ( ph -> A e. RR ) |
2 |
|
resubidaddid1lem.b |
|- ( ph -> B e. RR ) |
3 |
|
resubidaddid1lem.c |
|- ( ph -> C e. RR ) |
4 |
|
resubidaddid1lem.1 |
|- ( ph -> ( A -R B ) = ( B -R C ) ) |
5 |
|
rersubcl |
|- ( ( A e. RR /\ B e. RR ) -> ( A -R B ) e. RR ) |
6 |
1 2 5
|
syl2anc |
|- ( ph -> ( A -R B ) e. RR ) |
7 |
|
rersubcl |
|- ( ( B e. RR /\ C e. RR ) -> ( B -R C ) e. RR ) |
8 |
2 3 7
|
syl2anc |
|- ( ph -> ( B -R C ) e. RR ) |
9 |
6 8
|
readdcld |
|- ( ph -> ( ( A -R B ) + ( B -R C ) ) e. RR ) |
10 |
4
|
eqcomd |
|- ( ph -> ( B -R C ) = ( A -R B ) ) |
11 |
2 3 6
|
resubaddd |
|- ( ph -> ( ( B -R C ) = ( A -R B ) <-> ( C + ( A -R B ) ) = B ) ) |
12 |
10 11
|
mpbid |
|- ( ph -> ( C + ( A -R B ) ) = B ) |
13 |
12
|
oveq1d |
|- ( ph -> ( ( C + ( A -R B ) ) + ( B -R C ) ) = ( B + ( B -R C ) ) ) |
14 |
3
|
recnd |
|- ( ph -> C e. CC ) |
15 |
6
|
recnd |
|- ( ph -> ( A -R B ) e. CC ) |
16 |
8
|
recnd |
|- ( ph -> ( B -R C ) e. CC ) |
17 |
14 15 16
|
addassd |
|- ( ph -> ( ( C + ( A -R B ) ) + ( B -R C ) ) = ( C + ( ( A -R B ) + ( B -R C ) ) ) ) |
18 |
1 2 8
|
resubaddd |
|- ( ph -> ( ( A -R B ) = ( B -R C ) <-> ( B + ( B -R C ) ) = A ) ) |
19 |
4 18
|
mpbid |
|- ( ph -> ( B + ( B -R C ) ) = A ) |
20 |
13 17 19
|
3eqtr3d |
|- ( ph -> ( C + ( ( A -R B ) + ( B -R C ) ) ) = A ) |
21 |
3 9 20
|
reladdrsub |
|- ( ph -> ( ( A -R B ) + ( B -R C ) ) = ( A -R C ) ) |