Step |
Hyp |
Ref |
Expression |
1 |
|
resubidaddid1lem.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
resubidaddid1lem.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
resubidaddid1lem.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
4 |
|
resubidaddid1lem.1 |
⊢ ( 𝜑 → ( 𝐴 −ℝ 𝐵 ) = ( 𝐵 −ℝ 𝐶 ) ) |
5 |
|
rersubcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 −ℝ 𝐵 ) ∈ ℝ ) |
6 |
1 2 5
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 −ℝ 𝐵 ) ∈ ℝ ) |
7 |
|
rersubcl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 −ℝ 𝐶 ) ∈ ℝ ) |
8 |
2 3 7
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 −ℝ 𝐶 ) ∈ ℝ ) |
9 |
6 8
|
readdcld |
⊢ ( 𝜑 → ( ( 𝐴 −ℝ 𝐵 ) + ( 𝐵 −ℝ 𝐶 ) ) ∈ ℝ ) |
10 |
4
|
eqcomd |
⊢ ( 𝜑 → ( 𝐵 −ℝ 𝐶 ) = ( 𝐴 −ℝ 𝐵 ) ) |
11 |
2 3 6
|
resubaddd |
⊢ ( 𝜑 → ( ( 𝐵 −ℝ 𝐶 ) = ( 𝐴 −ℝ 𝐵 ) ↔ ( 𝐶 + ( 𝐴 −ℝ 𝐵 ) ) = 𝐵 ) ) |
12 |
10 11
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 + ( 𝐴 −ℝ 𝐵 ) ) = 𝐵 ) |
13 |
12
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐶 + ( 𝐴 −ℝ 𝐵 ) ) + ( 𝐵 −ℝ 𝐶 ) ) = ( 𝐵 + ( 𝐵 −ℝ 𝐶 ) ) ) |
14 |
3
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
15 |
6
|
recnd |
⊢ ( 𝜑 → ( 𝐴 −ℝ 𝐵 ) ∈ ℂ ) |
16 |
8
|
recnd |
⊢ ( 𝜑 → ( 𝐵 −ℝ 𝐶 ) ∈ ℂ ) |
17 |
14 15 16
|
addassd |
⊢ ( 𝜑 → ( ( 𝐶 + ( 𝐴 −ℝ 𝐵 ) ) + ( 𝐵 −ℝ 𝐶 ) ) = ( 𝐶 + ( ( 𝐴 −ℝ 𝐵 ) + ( 𝐵 −ℝ 𝐶 ) ) ) ) |
18 |
1 2 8
|
resubaddd |
⊢ ( 𝜑 → ( ( 𝐴 −ℝ 𝐵 ) = ( 𝐵 −ℝ 𝐶 ) ↔ ( 𝐵 + ( 𝐵 −ℝ 𝐶 ) ) = 𝐴 ) ) |
19 |
4 18
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 + ( 𝐵 −ℝ 𝐶 ) ) = 𝐴 ) |
20 |
13 17 19
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐶 + ( ( 𝐴 −ℝ 𝐵 ) + ( 𝐵 −ℝ 𝐶 ) ) ) = 𝐴 ) |
21 |
3 9 20
|
reladdrsub |
⊢ ( 𝜑 → ( ( 𝐴 −ℝ 𝐵 ) + ( 𝐵 −ℝ 𝐶 ) ) = ( 𝐴 −ℝ 𝐶 ) ) |