Metamath Proof Explorer


Theorem resubidaddid1lem

Description: Lemma for resubidaddid1 . A special case of npncan . (Contributed by Steven Nguyen, 8-Jan-2023)

Ref Expression
Hypotheses resubidaddid1lem.a ( 𝜑𝐴 ∈ ℝ )
resubidaddid1lem.b ( 𝜑𝐵 ∈ ℝ )
resubidaddid1lem.c ( 𝜑𝐶 ∈ ℝ )
resubidaddid1lem.1 ( 𝜑 → ( 𝐴 𝐵 ) = ( 𝐵 𝐶 ) )
Assertion resubidaddid1lem ( 𝜑 → ( ( 𝐴 𝐵 ) + ( 𝐵 𝐶 ) ) = ( 𝐴 𝐶 ) )

Proof

Step Hyp Ref Expression
1 resubidaddid1lem.a ( 𝜑𝐴 ∈ ℝ )
2 resubidaddid1lem.b ( 𝜑𝐵 ∈ ℝ )
3 resubidaddid1lem.c ( 𝜑𝐶 ∈ ℝ )
4 resubidaddid1lem.1 ( 𝜑 → ( 𝐴 𝐵 ) = ( 𝐵 𝐶 ) )
5 rersubcl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 𝐵 ) ∈ ℝ )
6 1 2 5 syl2anc ( 𝜑 → ( 𝐴 𝐵 ) ∈ ℝ )
7 rersubcl ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 𝐶 ) ∈ ℝ )
8 2 3 7 syl2anc ( 𝜑 → ( 𝐵 𝐶 ) ∈ ℝ )
9 6 8 readdcld ( 𝜑 → ( ( 𝐴 𝐵 ) + ( 𝐵 𝐶 ) ) ∈ ℝ )
10 4 eqcomd ( 𝜑 → ( 𝐵 𝐶 ) = ( 𝐴 𝐵 ) )
11 2 3 6 resubaddd ( 𝜑 → ( ( 𝐵 𝐶 ) = ( 𝐴 𝐵 ) ↔ ( 𝐶 + ( 𝐴 𝐵 ) ) = 𝐵 ) )
12 10 11 mpbid ( 𝜑 → ( 𝐶 + ( 𝐴 𝐵 ) ) = 𝐵 )
13 12 oveq1d ( 𝜑 → ( ( 𝐶 + ( 𝐴 𝐵 ) ) + ( 𝐵 𝐶 ) ) = ( 𝐵 + ( 𝐵 𝐶 ) ) )
14 3 recnd ( 𝜑𝐶 ∈ ℂ )
15 6 recnd ( 𝜑 → ( 𝐴 𝐵 ) ∈ ℂ )
16 8 recnd ( 𝜑 → ( 𝐵 𝐶 ) ∈ ℂ )
17 14 15 16 addassd ( 𝜑 → ( ( 𝐶 + ( 𝐴 𝐵 ) ) + ( 𝐵 𝐶 ) ) = ( 𝐶 + ( ( 𝐴 𝐵 ) + ( 𝐵 𝐶 ) ) ) )
18 1 2 8 resubaddd ( 𝜑 → ( ( 𝐴 𝐵 ) = ( 𝐵 𝐶 ) ↔ ( 𝐵 + ( 𝐵 𝐶 ) ) = 𝐴 ) )
19 4 18 mpbid ( 𝜑 → ( 𝐵 + ( 𝐵 𝐶 ) ) = 𝐴 )
20 13 17 19 3eqtr3d ( 𝜑 → ( 𝐶 + ( ( 𝐴 𝐵 ) + ( 𝐵 𝐶 ) ) ) = 𝐴 )
21 3 9 20 reladdrsub ( 𝜑 → ( ( 𝐴 𝐵 ) + ( 𝐵 𝐶 ) ) = ( 𝐴 𝐶 ) )