Step |
Hyp |
Ref |
Expression |
1 |
|
resvsca.r |
|- R = ( W |`v A ) |
2 |
|
resvsca.f |
|- F = ( Scalar ` W ) |
3 |
|
resvsca.b |
|- B = ( Base ` F ) |
4 |
2
|
fvexi |
|- F e. _V |
5 |
|
eqid |
|- ( F |`s A ) = ( F |`s A ) |
6 |
5 3
|
ressid2 |
|- ( ( B C_ A /\ F e. _V /\ A e. V ) -> ( F |`s A ) = F ) |
7 |
4 6
|
mp3an2 |
|- ( ( B C_ A /\ A e. V ) -> ( F |`s A ) = F ) |
8 |
7
|
3adant2 |
|- ( ( B C_ A /\ W e. _V /\ A e. V ) -> ( F |`s A ) = F ) |
9 |
1 2 3
|
resvid2 |
|- ( ( B C_ A /\ W e. _V /\ A e. V ) -> R = W ) |
10 |
9
|
fveq2d |
|- ( ( B C_ A /\ W e. _V /\ A e. V ) -> ( Scalar ` R ) = ( Scalar ` W ) ) |
11 |
2 8 10
|
3eqtr4a |
|- ( ( B C_ A /\ W e. _V /\ A e. V ) -> ( F |`s A ) = ( Scalar ` R ) ) |
12 |
11
|
3expib |
|- ( B C_ A -> ( ( W e. _V /\ A e. V ) -> ( F |`s A ) = ( Scalar ` R ) ) ) |
13 |
|
simp2 |
|- ( ( -. B C_ A /\ W e. _V /\ A e. V ) -> W e. _V ) |
14 |
|
ovex |
|- ( F |`s A ) e. _V |
15 |
|
scaid |
|- Scalar = Slot ( Scalar ` ndx ) |
16 |
15
|
setsid |
|- ( ( W e. _V /\ ( F |`s A ) e. _V ) -> ( F |`s A ) = ( Scalar ` ( W sSet <. ( Scalar ` ndx ) , ( F |`s A ) >. ) ) ) |
17 |
13 14 16
|
sylancl |
|- ( ( -. B C_ A /\ W e. _V /\ A e. V ) -> ( F |`s A ) = ( Scalar ` ( W sSet <. ( Scalar ` ndx ) , ( F |`s A ) >. ) ) ) |
18 |
1 2 3
|
resvval2 |
|- ( ( -. B C_ A /\ W e. _V /\ A e. V ) -> R = ( W sSet <. ( Scalar ` ndx ) , ( F |`s A ) >. ) ) |
19 |
18
|
fveq2d |
|- ( ( -. B C_ A /\ W e. _V /\ A e. V ) -> ( Scalar ` R ) = ( Scalar ` ( W sSet <. ( Scalar ` ndx ) , ( F |`s A ) >. ) ) ) |
20 |
17 19
|
eqtr4d |
|- ( ( -. B C_ A /\ W e. _V /\ A e. V ) -> ( F |`s A ) = ( Scalar ` R ) ) |
21 |
20
|
3expib |
|- ( -. B C_ A -> ( ( W e. _V /\ A e. V ) -> ( F |`s A ) = ( Scalar ` R ) ) ) |
22 |
12 21
|
pm2.61i |
|- ( ( W e. _V /\ A e. V ) -> ( F |`s A ) = ( Scalar ` R ) ) |
23 |
|
0fv |
|- ( (/) ` ( Scalar ` ndx ) ) = (/) |
24 |
|
0ex |
|- (/) e. _V |
25 |
24 15
|
strfvn |
|- ( Scalar ` (/) ) = ( (/) ` ( Scalar ` ndx ) ) |
26 |
|
ress0 |
|- ( (/) |`s A ) = (/) |
27 |
23 25 26
|
3eqtr4ri |
|- ( (/) |`s A ) = ( Scalar ` (/) ) |
28 |
|
fvprc |
|- ( -. W e. _V -> ( Scalar ` W ) = (/) ) |
29 |
2 28
|
syl5eq |
|- ( -. W e. _V -> F = (/) ) |
30 |
29
|
oveq1d |
|- ( -. W e. _V -> ( F |`s A ) = ( (/) |`s A ) ) |
31 |
|
reldmresv |
|- Rel dom |`v |
32 |
31
|
ovprc1 |
|- ( -. W e. _V -> ( W |`v A ) = (/) ) |
33 |
1 32
|
syl5eq |
|- ( -. W e. _V -> R = (/) ) |
34 |
33
|
fveq2d |
|- ( -. W e. _V -> ( Scalar ` R ) = ( Scalar ` (/) ) ) |
35 |
27 30 34
|
3eqtr4a |
|- ( -. W e. _V -> ( F |`s A ) = ( Scalar ` R ) ) |
36 |
35
|
adantr |
|- ( ( -. W e. _V /\ A e. V ) -> ( F |`s A ) = ( Scalar ` R ) ) |
37 |
22 36
|
pm2.61ian |
|- ( A e. V -> ( F |`s A ) = ( Scalar ` R ) ) |