Step |
Hyp |
Ref |
Expression |
1 |
|
resvsca.r |
⊢ 𝑅 = ( 𝑊 ↾v 𝐴 ) |
2 |
|
resvsca.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
3 |
|
resvsca.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
4 |
2
|
fvexi |
⊢ 𝐹 ∈ V |
5 |
|
eqid |
⊢ ( 𝐹 ↾s 𝐴 ) = ( 𝐹 ↾s 𝐴 ) |
6 |
5 3
|
ressid2 |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐹 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ↾s 𝐴 ) = 𝐹 ) |
7 |
4 6
|
mp3an2 |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ↾s 𝐴 ) = 𝐹 ) |
8 |
7
|
3adant2 |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ↾s 𝐴 ) = 𝐹 ) |
9 |
1 2 3
|
resvid2 |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → 𝑅 = 𝑊 ) |
10 |
9
|
fveq2d |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑊 ) ) |
11 |
2 8 10
|
3eqtr4a |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ↾s 𝐴 ) = ( Scalar ‘ 𝑅 ) ) |
12 |
11
|
3expib |
⊢ ( 𝐵 ⊆ 𝐴 → ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ↾s 𝐴 ) = ( Scalar ‘ 𝑅 ) ) ) |
13 |
|
simp2 |
⊢ ( ( ¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → 𝑊 ∈ V ) |
14 |
|
ovex |
⊢ ( 𝐹 ↾s 𝐴 ) ∈ V |
15 |
|
scaid |
⊢ Scalar = Slot ( Scalar ‘ ndx ) |
16 |
15
|
setsid |
⊢ ( ( 𝑊 ∈ V ∧ ( 𝐹 ↾s 𝐴 ) ∈ V ) → ( 𝐹 ↾s 𝐴 ) = ( Scalar ‘ ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝐹 ↾s 𝐴 ) 〉 ) ) ) |
17 |
13 14 16
|
sylancl |
⊢ ( ( ¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ↾s 𝐴 ) = ( Scalar ‘ ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝐹 ↾s 𝐴 ) 〉 ) ) ) |
18 |
1 2 3
|
resvval2 |
⊢ ( ( ¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → 𝑅 = ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝐹 ↾s 𝐴 ) 〉 ) ) |
19 |
18
|
fveq2d |
⊢ ( ( ¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( Scalar ‘ 𝑅 ) = ( Scalar ‘ ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝐹 ↾s 𝐴 ) 〉 ) ) ) |
20 |
17 19
|
eqtr4d |
⊢ ( ( ¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ↾s 𝐴 ) = ( Scalar ‘ 𝑅 ) ) |
21 |
20
|
3expib |
⊢ ( ¬ 𝐵 ⊆ 𝐴 → ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ↾s 𝐴 ) = ( Scalar ‘ 𝑅 ) ) ) |
22 |
12 21
|
pm2.61i |
⊢ ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ↾s 𝐴 ) = ( Scalar ‘ 𝑅 ) ) |
23 |
|
0fv |
⊢ ( ∅ ‘ ( Scalar ‘ ndx ) ) = ∅ |
24 |
|
0ex |
⊢ ∅ ∈ V |
25 |
24 15
|
strfvn |
⊢ ( Scalar ‘ ∅ ) = ( ∅ ‘ ( Scalar ‘ ndx ) ) |
26 |
|
ress0 |
⊢ ( ∅ ↾s 𝐴 ) = ∅ |
27 |
23 25 26
|
3eqtr4ri |
⊢ ( ∅ ↾s 𝐴 ) = ( Scalar ‘ ∅ ) |
28 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( Scalar ‘ 𝑊 ) = ∅ ) |
29 |
2 28
|
syl5eq |
⊢ ( ¬ 𝑊 ∈ V → 𝐹 = ∅ ) |
30 |
29
|
oveq1d |
⊢ ( ¬ 𝑊 ∈ V → ( 𝐹 ↾s 𝐴 ) = ( ∅ ↾s 𝐴 ) ) |
31 |
|
reldmresv |
⊢ Rel dom ↾v |
32 |
31
|
ovprc1 |
⊢ ( ¬ 𝑊 ∈ V → ( 𝑊 ↾v 𝐴 ) = ∅ ) |
33 |
1 32
|
syl5eq |
⊢ ( ¬ 𝑊 ∈ V → 𝑅 = ∅ ) |
34 |
33
|
fveq2d |
⊢ ( ¬ 𝑊 ∈ V → ( Scalar ‘ 𝑅 ) = ( Scalar ‘ ∅ ) ) |
35 |
27 30 34
|
3eqtr4a |
⊢ ( ¬ 𝑊 ∈ V → ( 𝐹 ↾s 𝐴 ) = ( Scalar ‘ 𝑅 ) ) |
36 |
35
|
adantr |
⊢ ( ( ¬ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ↾s 𝐴 ) = ( Scalar ‘ 𝑅 ) ) |
37 |
22 36
|
pm2.61ian |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 ↾s 𝐴 ) = ( Scalar ‘ 𝑅 ) ) |