| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brric |
|- ( R ~=r S <-> ( R RingIso S ) =/= (/) ) |
| 2 |
|
n0 |
|- ( ( R RingIso S ) =/= (/) <-> E. f f e. ( R RingIso S ) ) |
| 3 |
1 2
|
bitri |
|- ( R ~=r S <-> E. f f e. ( R RingIso S ) ) |
| 4 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 5 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 6 |
4 5
|
rimf1o |
|- ( f e. ( R RingIso S ) -> f : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) |
| 7 |
|
f1ofo |
|- ( f : ( Base ` R ) -1-1-onto-> ( Base ` S ) -> f : ( Base ` R ) -onto-> ( Base ` S ) ) |
| 8 |
|
foima |
|- ( f : ( Base ` R ) -onto-> ( Base ` S ) -> ( f " ( Base ` R ) ) = ( Base ` S ) ) |
| 9 |
6 7 8
|
3syl |
|- ( f e. ( R RingIso S ) -> ( f " ( Base ` R ) ) = ( Base ` S ) ) |
| 10 |
9
|
oveq2d |
|- ( f e. ( R RingIso S ) -> ( S |`s ( f " ( Base ` R ) ) ) = ( S |`s ( Base ` S ) ) ) |
| 11 |
|
rimrcl2 |
|- ( f e. ( R RingIso S ) -> S e. Ring ) |
| 12 |
5
|
ressid |
|- ( S e. Ring -> ( S |`s ( Base ` S ) ) = S ) |
| 13 |
11 12
|
syl |
|- ( f e. ( R RingIso S ) -> ( S |`s ( Base ` S ) ) = S ) |
| 14 |
10 13
|
eqtr2d |
|- ( f e. ( R RingIso S ) -> S = ( S |`s ( f " ( Base ` R ) ) ) ) |
| 15 |
14
|
adantr |
|- ( ( f e. ( R RingIso S ) /\ R e. CRing ) -> S = ( S |`s ( f " ( Base ` R ) ) ) ) |
| 16 |
|
eqid |
|- ( S |`s ( f " ( Base ` R ) ) ) = ( S |`s ( f " ( Base ` R ) ) ) |
| 17 |
|
rimrhm |
|- ( f e. ( R RingIso S ) -> f e. ( R RingHom S ) ) |
| 18 |
17
|
adantr |
|- ( ( f e. ( R RingIso S ) /\ R e. CRing ) -> f e. ( R RingHom S ) ) |
| 19 |
|
simpr |
|- ( ( f e. ( R RingIso S ) /\ R e. CRing ) -> R e. CRing ) |
| 20 |
19
|
crngringd |
|- ( ( f e. ( R RingIso S ) /\ R e. CRing ) -> R e. Ring ) |
| 21 |
4
|
subrgid |
|- ( R e. Ring -> ( Base ` R ) e. ( SubRing ` R ) ) |
| 22 |
20 21
|
syl |
|- ( ( f e. ( R RingIso S ) /\ R e. CRing ) -> ( Base ` R ) e. ( SubRing ` R ) ) |
| 23 |
16 18 19 22
|
imacrhmcl |
|- ( ( f e. ( R RingIso S ) /\ R e. CRing ) -> ( S |`s ( f " ( Base ` R ) ) ) e. CRing ) |
| 24 |
15 23
|
eqeltrd |
|- ( ( f e. ( R RingIso S ) /\ R e. CRing ) -> S e. CRing ) |
| 25 |
24
|
ex |
|- ( f e. ( R RingIso S ) -> ( R e. CRing -> S e. CRing ) ) |
| 26 |
25
|
exlimiv |
|- ( E. f f e. ( R RingIso S ) -> ( R e. CRing -> S e. CRing ) ) |
| 27 |
26
|
imp |
|- ( ( E. f f e. ( R RingIso S ) /\ R e. CRing ) -> S e. CRing ) |
| 28 |
3 27
|
sylanb |
|- ( ( R ~=r S /\ R e. CRing ) -> S e. CRing ) |