Metamath Proof Explorer


Theorem riotaclbgBAD

Description: Closure of restricted iota. (Contributed by NM, 28-Feb-2013) (Revised by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion riotaclbgBAD
|- ( A e. V -> ( E! x e. A ph <-> ( iota_ x e. A ph ) e. A ) )

Proof

Step Hyp Ref Expression
1 riotacl
 |-  ( E! x e. A ph -> ( iota_ x e. A ph ) e. A )
2 undefnel2
 |-  ( A e. V -> -. ( Undef ` A ) e. A )
3 iffalse
 |-  ( -. E! x e. A ph -> if ( E! x e. A ph , ( iota x ( x e. A /\ ph ) ) , ( Undef ` { x | x e. A } ) ) = ( Undef ` { x | x e. A } ) )
4 ax-riotaBAD
 |-  ( iota_ x e. A ph ) = if ( E! x e. A ph , ( iota x ( x e. A /\ ph ) ) , ( Undef ` { x | x e. A } ) )
5 abid1
 |-  A = { x | x e. A }
6 5 fveq2i
 |-  ( Undef ` A ) = ( Undef ` { x | x e. A } )
7 3 4 6 3eqtr4g
 |-  ( -. E! x e. A ph -> ( iota_ x e. A ph ) = ( Undef ` A ) )
8 7 eleq1d
 |-  ( -. E! x e. A ph -> ( ( iota_ x e. A ph ) e. A <-> ( Undef ` A ) e. A ) )
9 8 notbid
 |-  ( -. E! x e. A ph -> ( -. ( iota_ x e. A ph ) e. A <-> -. ( Undef ` A ) e. A ) )
10 2 9 syl5ibrcom
 |-  ( A e. V -> ( -. E! x e. A ph -> -. ( iota_ x e. A ph ) e. A ) )
11 10 con4d
 |-  ( A e. V -> ( ( iota_ x e. A ph ) e. A -> E! x e. A ph ) )
12 1 11 impbid2
 |-  ( A e. V -> ( E! x e. A ph <-> ( iota_ x e. A ph ) e. A ) )