Step |
Hyp |
Ref |
Expression |
1 |
|
neg1z |
|- -u 1 e. ZZ |
2 |
|
rmxadd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ -u 1 e. ZZ ) -> ( A rmX ( N + -u 1 ) ) = ( ( ( A rmX N ) x. ( A rmX -u 1 ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) x. ( A rmY -u 1 ) ) ) ) ) |
3 |
1 2
|
mp3an3 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX ( N + -u 1 ) ) = ( ( ( A rmX N ) x. ( A rmX -u 1 ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) x. ( A rmY -u 1 ) ) ) ) ) |
4 |
|
1z |
|- 1 e. ZZ |
5 |
|
rmxneg |
|- ( ( A e. ( ZZ>= ` 2 ) /\ 1 e. ZZ ) -> ( A rmX -u 1 ) = ( A rmX 1 ) ) |
6 |
4 5
|
mpan2 |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmX -u 1 ) = ( A rmX 1 ) ) |
7 |
|
rmx1 |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmX 1 ) = A ) |
8 |
6 7
|
eqtrd |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmX -u 1 ) = A ) |
9 |
8
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX -u 1 ) = A ) |
10 |
9
|
oveq2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX N ) x. ( A rmX -u 1 ) ) = ( ( A rmX N ) x. A ) ) |
11 |
|
frmx |
|- rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 |
12 |
11
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. NN0 ) |
13 |
12
|
nn0cnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. CC ) |
14 |
|
eluzelcn |
|- ( A e. ( ZZ>= ` 2 ) -> A e. CC ) |
15 |
14
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> A e. CC ) |
16 |
13 15
|
mulcomd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX N ) x. A ) = ( A x. ( A rmX N ) ) ) |
17 |
10 16
|
eqtrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX N ) x. ( A rmX -u 1 ) ) = ( A x. ( A rmX N ) ) ) |
18 |
|
rmyneg |
|- ( ( A e. ( ZZ>= ` 2 ) /\ 1 e. ZZ ) -> ( A rmY -u 1 ) = -u ( A rmY 1 ) ) |
19 |
4 18
|
mpan2 |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmY -u 1 ) = -u ( A rmY 1 ) ) |
20 |
|
rmy1 |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmY 1 ) = 1 ) |
21 |
20
|
negeqd |
|- ( A e. ( ZZ>= ` 2 ) -> -u ( A rmY 1 ) = -u 1 ) |
22 |
19 21
|
eqtrd |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmY -u 1 ) = -u 1 ) |
23 |
22
|
oveq2d |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A rmY N ) x. ( A rmY -u 1 ) ) = ( ( A rmY N ) x. -u 1 ) ) |
24 |
23
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmY N ) x. ( A rmY -u 1 ) ) = ( ( A rmY N ) x. -u 1 ) ) |
25 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
26 |
25
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. ZZ ) |
27 |
26
|
zcnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. CC ) |
28 |
|
ax-1cn |
|- 1 e. CC |
29 |
|
mulneg2 |
|- ( ( ( A rmY N ) e. CC /\ 1 e. CC ) -> ( ( A rmY N ) x. -u 1 ) = -u ( ( A rmY N ) x. 1 ) ) |
30 |
27 28 29
|
sylancl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmY N ) x. -u 1 ) = -u ( ( A rmY N ) x. 1 ) ) |
31 |
27
|
mulid1d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmY N ) x. 1 ) = ( A rmY N ) ) |
32 |
31
|
negeqd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> -u ( ( A rmY N ) x. 1 ) = -u ( A rmY N ) ) |
33 |
30 32
|
eqtrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmY N ) x. -u 1 ) = -u ( A rmY N ) ) |
34 |
24 33
|
eqtrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmY N ) x. ( A rmY -u 1 ) ) = -u ( A rmY N ) ) |
35 |
34
|
oveq2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) x. ( A rmY -u 1 ) ) ) = ( ( ( A ^ 2 ) - 1 ) x. -u ( A rmY N ) ) ) |
36 |
|
rmspecnonsq |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. ( NN \ []NN ) ) |
37 |
36
|
eldifad |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. NN ) |
38 |
37
|
nncnd |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. CC ) |
39 |
38
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A ^ 2 ) - 1 ) e. CC ) |
40 |
39 27
|
mulneg2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A ^ 2 ) - 1 ) x. -u ( A rmY N ) ) = -u ( ( ( A ^ 2 ) - 1 ) x. ( A rmY N ) ) ) |
41 |
35 40
|
eqtrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) x. ( A rmY -u 1 ) ) ) = -u ( ( ( A ^ 2 ) - 1 ) x. ( A rmY N ) ) ) |
42 |
17 41
|
oveq12d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A rmX N ) x. ( A rmX -u 1 ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) x. ( A rmY -u 1 ) ) ) ) = ( ( A x. ( A rmX N ) ) + -u ( ( ( A ^ 2 ) - 1 ) x. ( A rmY N ) ) ) ) |
43 |
3 42
|
eqtrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX ( N + -u 1 ) ) = ( ( A x. ( A rmX N ) ) + -u ( ( ( A ^ 2 ) - 1 ) x. ( A rmY N ) ) ) ) |
44 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
45 |
44
|
adantl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> N e. CC ) |
46 |
|
negsub |
|- ( ( N e. CC /\ 1 e. CC ) -> ( N + -u 1 ) = ( N - 1 ) ) |
47 |
45 28 46
|
sylancl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( N + -u 1 ) = ( N - 1 ) ) |
48 |
47
|
oveq2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX ( N + -u 1 ) ) = ( A rmX ( N - 1 ) ) ) |
49 |
15 13
|
mulcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A x. ( A rmX N ) ) e. CC ) |
50 |
39 27
|
mulcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A ^ 2 ) - 1 ) x. ( A rmY N ) ) e. CC ) |
51 |
49 50
|
negsubd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A x. ( A rmX N ) ) + -u ( ( ( A ^ 2 ) - 1 ) x. ( A rmY N ) ) ) = ( ( A x. ( A rmX N ) ) - ( ( ( A ^ 2 ) - 1 ) x. ( A rmY N ) ) ) ) |
52 |
43 48 51
|
3eqtr3d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX ( N - 1 ) ) = ( ( A x. ( A rmX N ) ) - ( ( ( A ^ 2 ) - 1 ) x. ( A rmY N ) ) ) ) |