| Step | Hyp | Ref | Expression | 
						
							| 1 |  | peano2z |  |-  ( N e. ZZ -> ( N + 1 ) e. ZZ ) | 
						
							| 2 |  | frmy |  |-  rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ | 
						
							| 3 | 2 | fovcl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( N + 1 ) e. ZZ ) -> ( A rmY ( N + 1 ) ) e. ZZ ) | 
						
							| 4 | 1 3 | sylan2 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY ( N + 1 ) ) e. ZZ ) | 
						
							| 5 | 4 | zcnd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY ( N + 1 ) ) e. CC ) | 
						
							| 6 |  | 2cn |  |-  2 e. CC | 
						
							| 7 | 2 | fovcl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. ZZ ) | 
						
							| 8 | 7 | zcnd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. CC ) | 
						
							| 9 |  | eluzelcn |  |-  ( A e. ( ZZ>= ` 2 ) -> A e. CC ) | 
						
							| 10 | 9 | adantr |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> A e. CC ) | 
						
							| 11 | 8 10 | mulcld |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmY N ) x. A ) e. CC ) | 
						
							| 12 |  | mulcl |  |-  ( ( 2 e. CC /\ ( ( A rmY N ) x. A ) e. CC ) -> ( 2 x. ( ( A rmY N ) x. A ) ) e. CC ) | 
						
							| 13 | 6 11 12 | sylancr |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( 2 x. ( ( A rmY N ) x. A ) ) e. CC ) | 
						
							| 14 |  | peano2zm |  |-  ( N e. ZZ -> ( N - 1 ) e. ZZ ) | 
						
							| 15 | 2 | fovcl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( N - 1 ) e. ZZ ) -> ( A rmY ( N - 1 ) ) e. ZZ ) | 
						
							| 16 | 14 15 | sylan2 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY ( N - 1 ) ) e. ZZ ) | 
						
							| 17 | 16 | zcnd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY ( N - 1 ) ) e. CC ) | 
						
							| 18 | 13 17 | subcld |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( 2 x. ( ( A rmY N ) x. A ) ) - ( A rmY ( N - 1 ) ) ) e. CC ) | 
						
							| 19 |  | rmyp1 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY ( N + 1 ) ) = ( ( ( A rmY N ) x. A ) + ( A rmX N ) ) ) | 
						
							| 20 |  | rmym1 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY ( N - 1 ) ) = ( ( ( A rmY N ) x. A ) - ( A rmX N ) ) ) | 
						
							| 21 | 19 20 | oveq12d |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmY ( N + 1 ) ) + ( A rmY ( N - 1 ) ) ) = ( ( ( ( A rmY N ) x. A ) + ( A rmX N ) ) + ( ( ( A rmY N ) x. A ) - ( A rmX N ) ) ) ) | 
						
							| 22 |  | frmx |  |-  rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 | 
						
							| 23 | 22 | fovcl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. NN0 ) | 
						
							| 24 | 23 | nn0cnd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. CC ) | 
						
							| 25 | 11 24 11 | ppncand |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( ( A rmY N ) x. A ) + ( A rmX N ) ) + ( ( ( A rmY N ) x. A ) - ( A rmX N ) ) ) = ( ( ( A rmY N ) x. A ) + ( ( A rmY N ) x. A ) ) ) | 
						
							| 26 | 13 17 | npcand |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( 2 x. ( ( A rmY N ) x. A ) ) - ( A rmY ( N - 1 ) ) ) + ( A rmY ( N - 1 ) ) ) = ( 2 x. ( ( A rmY N ) x. A ) ) ) | 
						
							| 27 | 11 | 2timesd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( 2 x. ( ( A rmY N ) x. A ) ) = ( ( ( A rmY N ) x. A ) + ( ( A rmY N ) x. A ) ) ) | 
						
							| 28 | 26 27 | eqtr2d |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A rmY N ) x. A ) + ( ( A rmY N ) x. A ) ) = ( ( ( 2 x. ( ( A rmY N ) x. A ) ) - ( A rmY ( N - 1 ) ) ) + ( A rmY ( N - 1 ) ) ) ) | 
						
							| 29 | 21 25 28 | 3eqtrd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmY ( N + 1 ) ) + ( A rmY ( N - 1 ) ) ) = ( ( ( 2 x. ( ( A rmY N ) x. A ) ) - ( A rmY ( N - 1 ) ) ) + ( A rmY ( N - 1 ) ) ) ) | 
						
							| 30 | 5 18 17 29 | addcan2ad |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY ( N + 1 ) ) = ( ( 2 x. ( ( A rmY N ) x. A ) ) - ( A rmY ( N - 1 ) ) ) ) |