| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ruc.1 |  |-  ( ph -> F : NN --> RR ) | 
						
							| 2 |  | ruc.2 |  |-  ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) | 
						
							| 3 |  | ruc.4 |  |-  C = ( { <. 0 , <. 0 , 1 >. >. } u. F ) | 
						
							| 4 |  | ruc.5 |  |-  G = seq 0 ( D , C ) | 
						
							| 5 | 4 | fveq1i |  |-  ( G ` 0 ) = ( seq 0 ( D , C ) ` 0 ) | 
						
							| 6 |  | 0z |  |-  0 e. ZZ | 
						
							| 7 |  | ffn |  |-  ( F : NN --> RR -> F Fn NN ) | 
						
							| 8 |  | fnresdm |  |-  ( F Fn NN -> ( F |` NN ) = F ) | 
						
							| 9 | 1 7 8 | 3syl |  |-  ( ph -> ( F |` NN ) = F ) | 
						
							| 10 |  | dfn2 |  |-  NN = ( NN0 \ { 0 } ) | 
						
							| 11 | 10 | reseq2i |  |-  ( F |` NN ) = ( F |` ( NN0 \ { 0 } ) ) | 
						
							| 12 | 9 11 | eqtr3di |  |-  ( ph -> F = ( F |` ( NN0 \ { 0 } ) ) ) | 
						
							| 13 | 12 | uneq2d |  |-  ( ph -> ( { <. 0 , <. 0 , 1 >. >. } u. F ) = ( { <. 0 , <. 0 , 1 >. >. } u. ( F |` ( NN0 \ { 0 } ) ) ) ) | 
						
							| 14 | 3 13 | eqtrid |  |-  ( ph -> C = ( { <. 0 , <. 0 , 1 >. >. } u. ( F |` ( NN0 \ { 0 } ) ) ) ) | 
						
							| 15 | 14 | fveq1d |  |-  ( ph -> ( C ` 0 ) = ( ( { <. 0 , <. 0 , 1 >. >. } u. ( F |` ( NN0 \ { 0 } ) ) ) ` 0 ) ) | 
						
							| 16 |  | c0ex |  |-  0 e. _V | 
						
							| 17 | 16 | a1i |  |-  ( T. -> 0 e. _V ) | 
						
							| 18 |  | opex |  |-  <. 0 , 1 >. e. _V | 
						
							| 19 | 18 | a1i |  |-  ( T. -> <. 0 , 1 >. e. _V ) | 
						
							| 20 |  | eqid |  |-  ( { <. 0 , <. 0 , 1 >. >. } u. ( F |` ( NN0 \ { 0 } ) ) ) = ( { <. 0 , <. 0 , 1 >. >. } u. ( F |` ( NN0 \ { 0 } ) ) ) | 
						
							| 21 | 17 19 20 | fvsnun1 |  |-  ( T. -> ( ( { <. 0 , <. 0 , 1 >. >. } u. ( F |` ( NN0 \ { 0 } ) ) ) ` 0 ) = <. 0 , 1 >. ) | 
						
							| 22 | 21 | mptru |  |-  ( ( { <. 0 , <. 0 , 1 >. >. } u. ( F |` ( NN0 \ { 0 } ) ) ) ` 0 ) = <. 0 , 1 >. | 
						
							| 23 | 15 22 | eqtrdi |  |-  ( ph -> ( C ` 0 ) = <. 0 , 1 >. ) | 
						
							| 24 | 6 23 | seq1i |  |-  ( ph -> ( seq 0 ( D , C ) ` 0 ) = <. 0 , 1 >. ) | 
						
							| 25 | 5 24 | eqtrid |  |-  ( ph -> ( G ` 0 ) = <. 0 , 1 >. ) |