| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-s4 |
|- <" A B C D "> = ( <" A B C "> ++ <" D "> ) |
| 2 |
|
simpl |
|- ( ( A e. S /\ B e. S ) -> A e. S ) |
| 3 |
2
|
adantr |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> A e. S ) |
| 4 |
|
simpr |
|- ( ( A e. S /\ B e. S ) -> B e. S ) |
| 5 |
4
|
adantr |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> B e. S ) |
| 6 |
|
simpl |
|- ( ( C e. S /\ D e. S ) -> C e. S ) |
| 7 |
6
|
adantl |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> C e. S ) |
| 8 |
3 5 7
|
s3cld |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> <" A B C "> e. Word S ) |
| 9 |
|
simpr |
|- ( ( C e. S /\ D e. S ) -> D e. S ) |
| 10 |
9
|
adantl |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> D e. S ) |
| 11 |
|
cats1un |
|- ( ( <" A B C "> e. Word S /\ D e. S ) -> ( <" A B C "> ++ <" D "> ) = ( <" A B C "> u. { <. ( # ` <" A B C "> ) , D >. } ) ) |
| 12 |
8 10 11
|
syl2anc |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( <" A B C "> ++ <" D "> ) = ( <" A B C "> u. { <. ( # ` <" A B C "> ) , D >. } ) ) |
| 13 |
|
df-s3 |
|- <" A B C "> = ( <" A B "> ++ <" C "> ) |
| 14 |
|
s2cl |
|- ( ( A e. S /\ B e. S ) -> <" A B "> e. Word S ) |
| 15 |
14
|
adantr |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> <" A B "> e. Word S ) |
| 16 |
|
cats1un |
|- ( ( <" A B "> e. Word S /\ C e. S ) -> ( <" A B "> ++ <" C "> ) = ( <" A B "> u. { <. ( # ` <" A B "> ) , C >. } ) ) |
| 17 |
15 7 16
|
syl2anc |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( <" A B "> ++ <" C "> ) = ( <" A B "> u. { <. ( # ` <" A B "> ) , C >. } ) ) |
| 18 |
13 17
|
eqtrid |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> <" A B C "> = ( <" A B "> u. { <. ( # ` <" A B "> ) , C >. } ) ) |
| 19 |
|
s2prop |
|- ( ( A e. S /\ B e. S ) -> <" A B "> = { <. 0 , A >. , <. 1 , B >. } ) |
| 20 |
19
|
adantr |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> <" A B "> = { <. 0 , A >. , <. 1 , B >. } ) |
| 21 |
20
|
uneq1d |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( <" A B "> u. { <. ( # ` <" A B "> ) , C >. } ) = ( { <. 0 , A >. , <. 1 , B >. } u. { <. ( # ` <" A B "> ) , C >. } ) ) |
| 22 |
18 21
|
eqtrd |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> <" A B C "> = ( { <. 0 , A >. , <. 1 , B >. } u. { <. ( # ` <" A B "> ) , C >. } ) ) |
| 23 |
22
|
uneq1d |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( <" A B C "> u. { <. ( # ` <" A B C "> ) , D >. } ) = ( ( { <. 0 , A >. , <. 1 , B >. } u. { <. ( # ` <" A B "> ) , C >. } ) u. { <. ( # ` <" A B C "> ) , D >. } ) ) |
| 24 |
12 23
|
eqtrd |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( <" A B C "> ++ <" D "> ) = ( ( { <. 0 , A >. , <. 1 , B >. } u. { <. ( # ` <" A B "> ) , C >. } ) u. { <. ( # ` <" A B C "> ) , D >. } ) ) |
| 25 |
|
unass |
|- ( ( { <. 0 , A >. , <. 1 , B >. } u. { <. ( # ` <" A B "> ) , C >. } ) u. { <. ( # ` <" A B C "> ) , D >. } ) = ( { <. 0 , A >. , <. 1 , B >. } u. ( { <. ( # ` <" A B "> ) , C >. } u. { <. ( # ` <" A B C "> ) , D >. } ) ) |
| 26 |
25
|
a1i |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( ( { <. 0 , A >. , <. 1 , B >. } u. { <. ( # ` <" A B "> ) , C >. } ) u. { <. ( # ` <" A B C "> ) , D >. } ) = ( { <. 0 , A >. , <. 1 , B >. } u. ( { <. ( # ` <" A B "> ) , C >. } u. { <. ( # ` <" A B C "> ) , D >. } ) ) ) |
| 27 |
|
df-pr |
|- { <. ( # ` <" A B "> ) , C >. , <. ( # ` <" A B C "> ) , D >. } = ( { <. ( # ` <" A B "> ) , C >. } u. { <. ( # ` <" A B C "> ) , D >. } ) |
| 28 |
|
s2len |
|- ( # ` <" A B "> ) = 2 |
| 29 |
28
|
a1i |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( # ` <" A B "> ) = 2 ) |
| 30 |
29
|
opeq1d |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> <. ( # ` <" A B "> ) , C >. = <. 2 , C >. ) |
| 31 |
|
s3len |
|- ( # ` <" A B C "> ) = 3 |
| 32 |
31
|
a1i |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( # ` <" A B C "> ) = 3 ) |
| 33 |
32
|
opeq1d |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> <. ( # ` <" A B C "> ) , D >. = <. 3 , D >. ) |
| 34 |
30 33
|
preq12d |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> { <. ( # ` <" A B "> ) , C >. , <. ( # ` <" A B C "> ) , D >. } = { <. 2 , C >. , <. 3 , D >. } ) |
| 35 |
27 34
|
eqtr3id |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( { <. ( # ` <" A B "> ) , C >. } u. { <. ( # ` <" A B C "> ) , D >. } ) = { <. 2 , C >. , <. 3 , D >. } ) |
| 36 |
35
|
uneq2d |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( { <. 0 , A >. , <. 1 , B >. } u. ( { <. ( # ` <" A B "> ) , C >. } u. { <. ( # ` <" A B C "> ) , D >. } ) ) = ( { <. 0 , A >. , <. 1 , B >. } u. { <. 2 , C >. , <. 3 , D >. } ) ) |
| 37 |
24 26 36
|
3eqtrd |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( <" A B C "> ++ <" D "> ) = ( { <. 0 , A >. , <. 1 , B >. } u. { <. 2 , C >. , <. 3 , D >. } ) ) |
| 38 |
1 37
|
eqtrid |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> <" A B C D "> = ( { <. 0 , A >. , <. 1 , B >. } u. { <. 2 , C >. , <. 3 , D >. } ) ) |